Magdaléna Kováčiková
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdaléna Kováčiková.
PLOS ONE | 2015
Andrea Bardůnek Valigurová; Gita G. Paskerova; Andrei Diakin; Magdaléna Kováčiková; Timur G. Simdyanov
This study focused on the attachment strategy, cell structure and the host-parasite interactions of the protococcidian Eleutheroschizon duboscqi, parasitising the polychaete Scoloplos armiger. The attached trophozoites and gamonts of E. duboscqi were detected at different development stages. The parasite develops epicellularly, covered by a host cell-derived, two-membrane parasitophorous sac forming a caudal tipped appendage. Staining with Evans blue suggests that this tail is protein-rich, supported by the presence of a fibrous substance in this area. Despite the ultrastructural evidence for long filaments in the tail, it stained only weakly for F-actin, while spectrin seemed to accumulate in this area. The attachment apparatus consists of lobes arranged in one (trophozoites) or two (gamonts) circles, crowned by a ring of filamentous fascicles. During trophozoite maturation, the internal space between the parasitophorous sac and parasite turns translucent, the parasite trilaminar pellicle seems to reorganise and is covered by a dense fibrous glycocalyx. The parasite surface is organised in broad folds with grooves in between. Micropores are situated at the bottom of the grooves. A layer of filaments organised in bands, underlying the folds and ending above the attachment fascicles, was detected just beneath the pellicle. Confocal microscopy, along with the application of cytoskeletal drugs (jasplakinolide, cytochalasin D, oryzalin) confirmed the presence of actin and tubulin polymerised forms in both the parasitophorous sac and the parasite, while myosin labelling was restricted to the sac. Despite positive tubulin labelling, no microtubules were detected in mature stages. The attachment strategy of E. duboscqi shares features with that of cryptosporidia and gregarines, i.e. the parasite itself conspicuously resembles an epicellularly located gregarine, while the parasitophorous sac develops in a similar manner to that in cryptosporidia. This study provides a re-evaluation of epicellular development in other apicomplexans and directly compares their niche with that of E. duboscqi.
PLOS ONE | 2017
Andrea Bardůnek Valigurová; Naděžda Vaškovicová; Andrei Diakin; Gita G. Paskerova; Timur G. Simdyanov; Magdaléna Kováčiková
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.
European Journal of Protistology | 2017
Magdaléna Kováčiková; Timur G. Simdyanov; Andrei Diakin; Andrea Bardůnek Valigurová
Gregarines represent a highly diversified group of ancestral apicomplexans, with various modes of locomotion and host-parasite interactions. The eugregarine parasite of the barnacle Balanus balanus, Cephaloidophora cf. communis, exhibits interesting organisation of its attachment apparatus along with unique motility modes. The pellicle covered gregarine is arranged into longitudinal epicytic folds. The epimerite is separated from the protomerite by a septum consisting of tubulin-rich filamentous structures and both are packed with microneme-like structures suggestive of their function in the production of adhesives important for attachment and secreted through the abundant epimerite pores. Detached trophozoites and gamonts are capable of gliding motility, enriched by jumping and rotational movements with rapid changes in gliding direction and cell flexions. Actin in its polymerised form (F-actin) is distributed throughout the entire gregarine, while myosin, detected in the cortical region of the cell, follows the pattern of the epicytic folds. Various motility modes exhibited by individuals of C. cf. communis, together with significant changes in their cell shape during locomotion, are not concordant with the gliding mechanisms generally described in apicomplexan zoites and indicate that additional structures must be involved (e.g. two 12-nm filaments; the specific dentate appearance of internal lamina inside the epicytic folds).
Protistology | 2016
Gita G. Paskerova; Ekaterina V. Frolova; Magdaléna Kováčiková; Tatiana S. Panfilkina; Yelisei S. Mesentsev; Alexey V. Smirnov; Nassonova Elena S.
Cysts and free spores of a metchnikovellid microsporidium were found in several specimens of an archigregarine Selenidium sp. isolated from polychaetes Pygospio elegans. Samples were collected at the littoral area of the Kandalaksha Bay of the White Sea in the year 2016. We examined this material with high-quality light optics in stained and live preparations. The structure of cysts and the host range suggest that this species belongs to the genus Metchnikovella Caullery et Mesnil, 1897. The length of the cysts varied from 9.5 to 34 .m (av. 23.8 .m); the width of the cysts was 4.8–9.2 µm (av. 8.2 µm). The number of cyst-bound spores varied from 7 to 18. Cyst-bound spores were oval or ovoid and arranged in two or three rows. The length of spores was 2.2–3.0 µm (av. 2.6 µm); the width was 1.4–2.9 µm (av. 1.7 µm). Free spores were similar to cyst-bound ones in shape and size. We summarized available data on the species of the genus Metchnikovella. The analysis of these data proved that the shape and size of the examined cysts and the host range of this parasite differ from those of any known species. We named the observed organism Metchnikovella dogieli n. sp.
Protist | 2018
Timur G. Simdyanov; Gita G. Paskerova; Andrea Bardůnek Valigurová; Andrei Diakin; Magdaléna Kováčiková; Joseph Schrevel; Laure Guillou; Andrej A. Dobrovolskij; Vladimir V. Aleoshin
Blastogregarines are poorly studied parasites of polychaetes superficially resembling gregarines, but lacking syzygy and gametocyst stages in the life cycle. Furthermore, their permanent multinuclearity and gametogenesis by means of budding considerably distinguish them from other parasitic Apicomplexa such as coccidians and hematozoans. The affiliation of blastogregarines has been uncertain: different authors considered them highly modified gregarines, an intermediate apicomplexan lineage between gregarines and coccidians, or an isolated group of eukaryotes altogether. Here, we report the ultrastructure of two blastogregarine species, Siedleckia nematoides and Chattonaria mesnili, and provide the first molecular data on their phylogeny based on SSU, 5.8S, and LSU rDNA sequences. Morphological analysis reveals that blastogregarines possess both gregarine and coccidian features. Several traits shared with archigregarines likely represent the ancestral states of the corresponding cell structures for parasitic apicomplexans: a distinctive tegument structure and myzocytotic feeding with a well-developed apical complex. Unlike gregarines but similar to coccidians however, the nuclei of male blastogregarine gametes are associated with two kinetosomes. Molecular phylogenetic analyses reveal that blastogregarines are an independent, early diverging lineage of apicomplexans. Overall, the morphological and molecular evidence congruently suggests that blastogregarines represent a separate class of Apicomplexa.
Protist | 2018
Gita G. Paskerova; Tatiana S. Miroliubova; Andrei Diakin; Magdaléna Kováčiková; Andrea Bardůnek Valigurová; Laure Guillou; Vladimir V. Aleoshin; Timur G. Simdyanov
Archigregarines are a key group for understanding the early evolution of Apicomplexa. Here we report morphological, ultrastructural, and molecular phylogenetic evidence from two archigregarine species: Selenidium pygospionis sp. n. and S. pherusae sp. n. They exhibited typical features of archigregarines. Additionally, an axial row of vacuoles of a presumably nutrient distribution system was revealed in S. pygospionis. Intracellular stages of S. pygospionis found in the host intestinal epithelium may point to the initial intracellular localization in the course of parasite development. Available archigregarine SSU (18S) rDNA sequences formed four major lineages fitting the taxonomical affiliations of their hosts, but not the morphological or biological features used for the taxonomical revision by Levine (1971). Consequently, the genus Selenidioides Levine, 1971 should be abolished. The branching order of these lineages was unresolved; topology tests rejected neither para- nor monophyly of archigregarines. We provided phylogenies based on LSU (28S) rDNA and near-complete ribosomal operon (concatenated SSU, 5.8S, LSU rDNAs) sequences including S. pygospionis sequences. Although being preliminary, they nevertheless revealed the monophyly of gregarines previously challenged by many molecular phylogenetic studies. Despite their molecular-phylogenetic heterogeneity, archigregarines exhibit an extremely conservative plesiomorphic structure; their ultrastructural key features appear to be symplesiomorphies rather than synapomorphies.
European Journal of Protistology | 2018
Magdaléna Kováčiková; Naděžda Vaškovicová; Jana Nebesářová; Andrea Bardůnek Valigurová
Archive | 2017
Magdaléna Kováčiková; Naděžda Vaškovicová; Andrea BardůnekValigurová
Archive | 2017
Magdaléna Kováčiková; Gita Paskerova G.; Andrei Diakin; Andrea Bardůnek Valigurová
Archive | 2016
Magdaléna Kováčiková; Andrei Diakin; Timur G. Simdyanov; Gita G. Paskerova; Andrea Bardůnek Valigurová