Magdalena Kowalska
Silesian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalena Kowalska.
Studia Geotechnica et Mechanica | 2012
Magdalena Kowalska
Abstract Parameters of soil constitutive models are not constant. This mainly concerns the strain parameters such as K, G or Eoed modules. What influences their values is not only soil type, structure and consistency, but also the history of stress and strain states. So, it is the question of the current state but also of what happened to the subsoil in the past (regarding geological and anthropological activity) and what impact would have the planned soil–structure interaction. This paper presents an overview of the literature showing how much the soil constitutive model parameters depend on loading and boundary conditions of a particular geotechnical problem. Model calibration methods are shortly described with special attention paid to the author’s “Loading Path Method”, which allows estimation of optimum parameter values of any soil constitutive model. An example of the use of this method to estimate strain parameters E and ν of Coulomb–Mohr elasticperfectly plastic model is given.
IOP Conference Series: Materials Science and Engineering | 2017
Magdalena Kowalska; Maciej Chmielewski
Waste production is one of the greatest problems of the modern world. It is inevitably related to the increase of industrialization. One of the most difficult, and growing in amounts, waste is scrap tyres. The most common method of utilization of end-of-life tyres by their incineration raises much concern in terms of air pollution. More sustainable seems to reuse the tyre derived products – rubber in particular – in civil engineering, where the interesting properties of this material may be effectively utilized. This paper presents results of direct shear strength tests on sand-rubber mixtures, which were next applied to a numerical FEM (finite element method) model of a road embankment built on soft ground. The laboratory tests, conducted for two types of scrap tyre rubber granulates (0.5 – 2 mm and 1 – 5 mm in size) mixed with medium fluvial sand in various proportions (5, 10, 30 and 50% by weight), proved that the unit weight of the mixtures is distinctly smaller that the unit weight of sand alone and at 50% rubber content it drops by half. The internal angle of friction stays almost unchanged for the mixtures with up to 10% of rubber (33 - 37°), but decreases by about 10° when the rubber content increases to 50%. In most of the cases analysed, the cohesion intercept is higher in case of sand-rubber mixtures when compared to sand alone. The numerical model simulated a 4.5 m high embankment with a 3 m thick layer made of sand-rubber mixtures, containing 0%, 10% or 30% of the waste product, founded on a weak subsoil (with a 3 m layer of organic soil). The results showed that stability factor of the structure built with the layer containing 30% of the coarser rubber granulate has increased from 1.60 – for sand only, to 2.15. The embankment was also able to carry load increased from 32 kPa to 45.5 kPa and its base showed much smaller settlement. The results prove that the use of tyre derived aggregates in embankment construction is not only an effective way of utilization of this problematic waste, but can also improve behaviour of such a structure.
Archives of civil engineering | 2013
Magdalena Kowalska
Abstract Reliable estimation of geotechnical parameters is often based on reconstruction of a complete loading process of subsoil on a specimen in laboratory tests. Unfortunately laboratory equipment available in many laboratories is sometimes limited to just a triaxial apparatus - the use of which generates difficulties whenever a non-axisymmetric problem is analysed. The author suggests two simple operations that may be done to improve the quality of simulation in triaxial tests. The first one is based on the use of triaxial extension along the segments of the stress path p’-q-θ for which the Lode’s angle values are positive. The second one consists in a modification of the equivalent stress value in such a way that the current stress level in the specimen complies with results of FEM analysis.
Procedia Engineering | 2016
Magdalena Kowalska
Architecture Civil Engineering Environment | 2015
Magdalena Kowalska
Architecture Civil Engineering Environment | 2010
Magdalena Kowalska
Procedia Engineering | 2017
Krzysztof Gromysz; Magdalena Kowalska
Architecture Civil Engineering Environment | 2016
Małgorzata Jastrzębska; Magdalena Kowalska
Przegląd Komunikacyjny | 2014
A. Orzeł; Magdalena Kowalska
Budownictwo i Inżynieria Środowiska | 2013
M. Jastrzębska; Magdalena Kowalska