Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magdalena Nowacka is active.

Publication


Featured researches published by Magdalena Nowacka.


Carbohydrate Polymers | 2013

Physicochemical and electrokinetic properties of silica/lignin biocomposites

Łukasz Klapiszewski; Magdalena Nowacka; Grzegorz Milczarek; Teofil Jesionowski

A new method of synthesis of novel composites obtained from silica and Kraft lignin has been proposed. Silica used in the study was obtained by three methods (hydrolysis and condensation of tetraethoxysilane, precipitation in a nonpolar and polar medium with the use of sodium silicate). To extend the possible range of applications, the silica was preliminary modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and finally it was modified with Kraft lignin earlier oxidised with sodium periodate (lignin bonded to SiO2 by covalent interactions). The products physicochemical and electrokinetic properties were thoroughly analysed. The dispersive properties and surface morphology were evaluated on the basis of particle size distributions and SEM images. The stability of dispersion in inorganic-organic systems were characterised on the basis of the zeta potential, whose value also permitted concluding on the interactions between colloidal molecules dispersed in water solutions. The products were subjected to elemental analysis to get percentage contents of N, C, H, S elements and were also characterised by XPS and FT-IR spectroscopy. Results of the study are of practical importance in prospective applications of SiO2/lignin biocomposites.


Journal of Materials Chemistry B | 2013

An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites

Marcin Wysokowski; Mykhailo Motylenko; Hartmut Stöcker; Vasilii V. Bazhenov; Enrico Langer; Anna Dobrowolska; Katarzyna Czaczyk; Roberta Galli; Allison L. Stelling; Thomas Behm; Łukasz Klapiszewski; Damian Ambrożewicz; Magdalena Nowacka; S. L. Molodtsov; Barbara Abendroth; Dirk C. Meyer; Krzysztof J. Kurzydłowski; Teofil Jesionowski; Hermann Ehrlich

β-Chitinous scaffolds isolated from the skeleton of marine cephalopod Sepia officinalis were used as a template for the in vitro formation of ZnO under conditions (70 °C) which are extreme for biological materials. Novel β-chitin/ZnO film-like composites were prepared for the first time by hydrothermal synthesis, and were thoroughly characterized using numerous analytical methods including Raman spectroscopy, HR-TEM and XRD. We demonstrate the growth of hexagonal ZnO nanocrystals on the β-chitin substrate. Our chitin/ZnO composites presented in this work show antibacterial properties against Gram positive bacteria and can be employed for development of inorganic-organic wound dressing materials.


Adsorption-journal of The International Adsorption Society | 2013

Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides

Filip Ciesielczyk; Przemysław Bartczak; Karolina Wieszczycka; Katarzyna Siwińska-Stefańska; Magdalena Nowacka; Teofil Jesionowski

The aim of this work was to obtain an inorganic oxide system containing silica and magnesium oxide, and characterized by specific physicochemical properties, in particular well-defined adsorption parameters. The preparation process was carried out according to a co-precipitation method using solutions of sodium silicate and selected inorganic magnesium salt. The oxide system obtained (MgO·SiO2) was used as a support (adsorbent) of nickel(II) ions, whose precursors were model solutions of nitrates. The effectiveness of the adsorption process was evaluated using many different analytical techniques, including atomic absorption spectroscopy, energy dispersive X-ray spectroscopy and equivalent point titration. Moreover the stability of adsorbent/adsorbate bonding was estimated. The oxide systems—adsorbents—used in the process were also analyzed according to their physicochemical properties, especially changes in adsorption parameters. The last part of the study involved evaluation of the kinetics of the adsorption process depending on time and the pH of the reaction system.


Journal of Nanomaterials | 2013

Preparation and characterization of multifunctional chitin/lignin materials

Łukasz Klapiszewski; Marcin Wysokowski; Izabela Majchrzak; Tomasz Szatkowski; Magdalena Nowacka; Katarzyna Siwińska-Stefańska; Karolina Szwarc-Rzepka; Przemysław Bartczak; Hermann Ehrlich; Teofil Jesionowski

Multifunctional chitin/lignin materials were synthesized. In order to combine mechanical milling of the biopolymers with simultaneous mixing, a centrifugal ball mill was utilized. The resulting materials, differing in terms of the proportions of precursors used, underwent detailed physicochemical and dispersive-morphological analysis. On the basis of FT-IR spectra and results of elemental analysis, the efficiency of the preparation of the materials was determined. The influence of the precursors on the thermal stability of the resulting systems was also evaluated. Zeta potential was determined as a function of pH to describe the electrokinetic stability of aqueous dispersions. This is important for evaluating the utility of the materials and indirectly confirms the effectiveness of the proposed method of synthesis of chitin/lignin products. Measurements were performed to determine basic colorimetric parameters, crucial in the production technology of multiple colored materials. It is expected that chitin/lignin materials will find a wide range of applications (biosorbents, polymer fillers, and electrochemical sensors), as they combine the unique properties of chitin with the specific structural features of lignin to provide a multifunctional material.


Colloid and Polymer Science | 2013

Structural characterisation of titania or silane-grafted TiO2-SiO2 oxide composite and influence of ionic strength or electrolyte type on their electrokinetic properties

Magdalena Nowacka; Katarzyna Siwińska-Stefańska; Teofil Jesionowski

The electrokinetic properties of commercial titania and TiO2-SiO2 oxide composite, precipitated from an emulsion system with cyclohexane as the organic phase, are described. To extend the possible range of applications of the TiO2-SiO2 oxide composite, its surface was modified with selected alkoxysilanes: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane and vinyltrimethoxysilane. Modification with selected alkoxysilanes leads to the introduction of new chemical groups on the TiO2-SiO2 surface, which changes its initial properties and also the surface charge, manifested by the values of zeta potential. This study was undertaken to establish the effect of the type and amount of the modifier and type and ionic strength of the electrolyte on the zeta potential of the modified TiO2-SiO2 oxide composite and thus on the stability of the colloidal system. The powders were characterised by FTIR and elemental analysis to confirm the effectiveness of the surface modification. The structure of TiO2-SiO2 oxide composite was resolved by the wide-angle X-ray scattering method.


Central European Journal of Chemistry | 2014

Silica/lignosulfonate hybrid materials: Preparation and characterization

Łukasz Klapiszewski; Jakub Zdarta; Tomasz Szatkowski; Marcin Wysokowski; Magdalena Nowacka; Karolina Szwarc-Rzepka; Przemysław Bartczak; Katarzyna Siwińska-Stefańska; Hermann Ehrlich; Teofil Jesionowski

The research reported here concerns the synthesis, characterization and potential applications of silica/lignosulfonate hybrid materials. Three types of silica were used (Aerosil®200, Syloid®244 and hydrated silica), along with magnesium lignosulfonate. The effectiveness of the hybrid material synthesis methodology was confirmed indirectly, using Fourier transform infrared spectroscopy, elemental and colorimetric analysis. Dispersive-morphological analysis indicates that the products with the best properties were obtained using 10 parts by weight of magnesium lignosulfonate per 100 parts of Syloid®244 silica. The relatively high thermal stability recorded for the majority of the synthesized products indicates the potential use of this kind of a material as a polymer filler. Results indicating the high electrokinetic stability of the materials are also of great importance. Additionally, the very good porous structure properties indicate the potential use of silica/lignosulfonate systems as biosorbents of hazardous metal ions and harmful organic compounds.


Journal of Nanomaterials | 2013

Fluoroalkylsilane versus alkylsilane as hydrophobic agents for silica and silicates

Damian Ambrożewicz; Filip Ciesielczyk; Magdalena Nowacka; Joanna Karasiewicz; Adam Piasecki; Hieronim Maciejewski; Teofil Jesionowski

Hydrophobic powders were obtained via surface modification of silica or magnesium silicate with selected silanes. A modified precipitation method, carried out in an emulsion system, was used for monodisperse silica synthesis, while magnesium silicate was precipitated in a traditional water system. Functionalization of the obtained inorganic supports was performed with selected alkylsilanes: one newly synthesized, 3-(2,2,3,3,4,4,5,5-octafluoropentyloxy)propyltriethoxysilane (OPF), and two commercial, octadecylsilane (ODS) and octyltriethoxysilane C14H32O3Si (OCS), in amounts of 3, 5, or 10 weight parts by mass of SiO2. It was determined how the chemical modification of the silica or magnesium silicate surface affected its physicochemical properties. The dispersive characteristics of both unmodified and functionalized silica-based systems were evaluated. The morphology and microstructure of the samples obtained were analyzed using scanning electron microscopy. The parameters of porous structure of the prepared systems were evaluated on the basis of BET equation as well as nitrogen adsorption/desorption isotherms. Wettability tests as well as elemental analysis of the obtained inorganic oxide hybrids were also performed. In order to verify the effectiveness of silica and magnesium silicate surface functionalization with selected silanes, FTIR spectra were investigated. The resulting experimental data allowed calculation of the degree of coverage of the silica-based systems with modifying agents.


Journal of Nanomaterials | 2012

Influence of selected alkoxysilanes on dispersive properties and surface chemistry of titanium dioxide and TiO 2 -SiO 2 composite material

Katarzyna Siwińska-Stefańska; Filip Ciesielczyk; Magdalena Nowacka; Teofil Jesionowski

The paper reports on characterisation of titanium dioxide and coprecipitated TiO2-SiO2 composite material functionalised with selected alkoxysilanes. Synthetic composite material was obtained by an emulsion method with cyclohexane as the organic phase, titanium sulfate as titanium precursor, and sodium silicate solution as precipitating agent were applied. Structures of titania and composite material samples were studied by the wide angle X-ray scattering method. The chemical composition of TiO2-SiO2 composite material precipitated was evaluated based on the energy dispersive X-ray spectroscopy technique. The functionalised TiO2 and TiO2-SiO2 composite material were thoroughly characterised to determine the yield of functionalisation with silanes. The characterisation included determination of dispersion and morphology of the systems (particle size distribution, scanning electron microscope images), adsorption properties (nitrogen adsorption isotherms), and electrokinetic properties (zeta potential).


International Journal of Pharmaceutics | 2015

Roxithromycin-loaded lipid nanoparticles for follicular targeting

Hanna Wosicka-Frąckowiak; Krzysztof Cal; Justyna Stefanowska; Eliza Główka; Magdalena Nowacka; Wiktoria Struck-Lewicka; Biljana Govedarica; Monika Pasikowska; Renata Dębowska; Teofil Jesionowski; Stane Srčič; Michał J. Markuszewski

Particulate drug carriers e.g. nanoparticles (NPs) have been shown to penetrate and accumulate preferentially in skin hair follicles creating high local concentration of a drug. In order to develop such a follicle targeting system we obtained and characterized solid lipid nanoparticles (SLN) loaded with roxithromycin (ROX). The mean particle size (172±2 nm), polydisperisty index (0.237±0.007), zeta potential (-31.68±3.10 mV) and incorporation efficiency (82.1±3.0%) were measured. The long term stability of ROX-loaded SLN suspensions was proved up to 26 weeks. In vitro drug release study was performed using apparatus 4 dialysis adapters. Skin irritation test conducted using the EpiDerm™ tissue model demonstrated no irritation potential for ROX-loaded SLN. Ex vivo human skin penetration studies, employing rhodamine B hexyl ester perchlorate (RBHE) as a fluorescent dye to label the particles, revealed fluorescence deep in the skin, specifically around the hair follicles up to over 1mm depth. The comparison of fluorescence intensities after application of RBHE solution and RBHE-labelled ROX-loaded SLN was done. Then cyanoacrylate follicular biopsies were obtained in vivo and analyzed for ROX content, proving the possibility of penetration to human pilosebaceous units and delivering ROX by using SLN with the size below 200 nm.


Journal of Nanomaterials | 2013

TiO 2 -SiO 2 /Ph-POSS functional hybrids: preparation and characterisation

Magdalena Nowacka; Damian Ambrożewicz; Teofil Jesionowski

The results of studies involving the innovative TiO2-SiO2/Ph-POSS hybrid were presented. An inorganic TiO2-SiO2 oxide composite was precipitated from an emulsion media. The functionalisation of surface for the obtained composite was carried out with the use of Tri Silanol Phenyl POSS (Ph-POSS) and a silane coupling agent--phenyltrimethoxysilane (PTMS). Electrokinetic and physicochemical as well as structural characteristics of obtained hybrids were evaluated. The zeta potential value has been determined, which provides relevant information regarding the interactions between colloid particles. Measurement of the zeta potential values allowed for an indirect assessment of stability for the studied hybrid fillers. In the next step, the degree of dispersion and surface morphology were evaluated based on the obtained particle size distribution curves and TEM images. The hydrophilic hydrophobic character of the surface was assessed by analysing the wettability profiles. The modification degree of the TiO2-SiO2 oxide composite was evaluated based on the infrared spectroscopy studies (FT-IR). Determination of the parameters of the porous structure was conducted by determining the specific surface area and the total volume and mean size of pores. Thermogravimetric measurements (TGA) were also carried out in order to measure the changes in sample mass as a function of temperature.

Collaboration


Dive into the Magdalena Nowacka's collaboration.

Top Co-Authors

Avatar

Teofil Jesionowski

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Łukasz Klapiszewski

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Damian Ambrożewicz

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Filip Ciesielczyk

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Karolina Szwarc-Rzepka

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcin Wysokowski

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Przemysław Bartczak

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hermann Ehrlich

Freiberg University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Lukasz Klapiszewski

Poznań University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge