Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magdalena R. Osburn is active.

Publication


Featured researches published by Magdalena R. Osburn.


Frontiers in Microbiology | 2014

Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA

Magdalena R. Osburn; Douglas E. LaRowe; Lily Momper; Jan P. Amend

The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere.


Geobiology | 2015

Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate‐reducing bacterial lipids in cocultures and methane seeps

K. S. Dawson; Magdalena R. Osburn; Alex L. Sessions; Victoria J. Orphan

Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro-organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate-reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing Deltaproteobacteria (SRB) recovered from deep-sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (ε(lipid-water)) for D. multivorans grown under different carbon assimilation conditions, with more D-enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of ε(lipid-water) values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D-enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in ε(lipid-water) values.


AAPG Bulletin | 2014

Facies, stratigraphy, and evolution of a middle Ediacaran carbonate ramp: Khufai Formation, Sultanate of Oman

Magdalena R. Osburn; John P. Grotzinger; Kristin D. Bergmann

The Khufai Formation is the oldest carbonate platform of the Cryogenian to lowermost Cambrian Huqf Supergroup. A stratigraphic characterization of this unit includes detailed facies descriptions, a sequence-stratigraphic interpretation, and evaluation of lateral heterogeneity and overall ramp evolution. The Khufai Formation comprises one and one-half depositional sequences with a maximum flooding interval near the base of the formation and a sequence boundary within the upper peritidal facies. Most of the deposition occurred during highstand progradation of a carbonate ramp. Facies tracts include outer-ramp and midramp mudstones and wackestones, ramp-crest grainstone shoal deposits, and extensive inner-ramp, microbially dominated peritidal deposits. Outcrops in the Oman Mountains are deep-water deposits, including turbiditic grainstone and wackestone interbedded with siliciclastic-rich siltstone and crinkly laminite. Facies patterns and parasequence composition are variable both laterally across the outcrop area and vertically through time because of a combination of ramp morphology, siliciclastic supply, and possible syndepositional faulting. The lithostratigraphic boundary between the Khufai Formation and the overlying Shuram Formation is gradational and represents significant flooding of the carbonate platform. The stratigraphic characterization presented here along with the identification of key facies and diagenetic features will help further future exploration and production of hydrocarbons from the Khufai Formation.


Frontiers in Microbiology | 2016

Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria

Magdalena R. Osburn; Katherine S. Dawson; Marilyn L. Fogel; Alex L. Sessions

Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.


Environmental Microbiology Reports | 2017

Major phylum-level differences between porefluid and host rock bacterial communities in the terrestrial deep subsurface

Lily Momper; Brandi Kiel Reese; Laura A. Zinke; Greg Wanger; Magdalena R. Osburn; Duane P. Moser; Jan P. Amend

Earths deep subsurface biosphere (DSB) is home to a vast number and wide variety of microorganisms. Although difficult to access and sample, deep subsurface environments have been probed through drilling programs, exploration of mines and sampling of deeply sourced vents and springs. In an effort to understand the ecology of deep terrestrial habitats, we examined bacterial diversity in the Sanford Underground Research Facility (SURF), the former Homestake gold mine, in South Dakota, USA. Whole genomic DNA was extracted from deeply circulating groundwater and corresponding host rock (at a depth of 1.45 km below ground surface). Pyrotag DNA sequencing of the 16S rRNA gene revealed diverse communities of putative chemolithoautotrophs, aerobic and anaerobic heterotrophs, numerous candidate phyla and unique rock-associated microbial assemblage. There was a clear and near-total separation of communities between SURF deeply circulating fracture fluids and SURF host-rocks. Sequencing data from SURF compared against five similarly sequenced terrestrial subsurface sites in Europe and North America revealed classes Clostridia and Betaproteobacteria were dominant in terrestrial fluids. This study presents a unique analysis showing differences in terrestrial subsurface microbial communities between fracture fluids and host rock through which those fluids permeate.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial

Jamie McFarlin; Yarrow Axford; Magdalena R. Osburn; Meredith A. Kelly; Erich C. Osterberg; Lauren Farnsworth

Significance Reconstructions of climate over Greenland during past warm periods provide crucial insights into the likely response of the Greenland Ice Sheet to future warming. However, limited preservation of interglacial archives due to extensive glacial scouring has hindered paleoclimate reconstructions along Greenland’s margins. Here, we report a Greenland lake sediment record that preserves both the present and previous interglacial periods. This record, combined with prior studies, demonstrates exceptionally strong warming over the northern Greenland Ice Sheet. Pronounced summer warming in this region helps explain ice sheet changes in the Early Holocene, while highlighting seemingly incongruous evidence for ice sheet extent and temperatures during the Last Interglacial. These findings may portend large future warming in this high-latitude region. Projections of future rates of mass loss from the Greenland Ice Sheet are highly uncertain because its sensitivity to warming is unclear. Geologic reconstructions of Quaternary interglacials can illustrate how the ice sheet responded during past warm periods, providing insights into ice sheet behavior and important tests for data-model comparisons. However, paleoclimate records from Greenland are limited: Early Holocene peak warmth has been quantified at only a few sites, and terrestrial sedimentary records of prior interglacials are exceptionally rare due to glacial erosion during the last glacial period. Here, we discuss findings from a lacustrine archive that records both the Holocene and the Last Interglacial (LIG) from Greenland, allowing for direct comparison between two interglacials. Sedimentary chironomid assemblages indicate peak July temperatures 4.0 to 7.0 °C warmer than modern during the Early Holocene maximum in summer insolation. Chaoborus and chironomids in LIG sediments indicate July temperatures at least 5.5 to 8.5 °C warmer than modern. These estimates indicate pronounced warming in northwest Greenland during both interglacials. This helps explain dramatic ice sheet thinning at Camp Century in northwest Greenland during the Early Holocene and, for the LIG, aligns with controversial estimates of Eemian warming from ice core data retrieved in northern Greenland. Converging geologic evidence for strong LIG warming is challenging to reconcile with inferred Greenland Ice Sheet extent during the LIG, and the two appear incompatible in many models of ice sheet evolution. An increase in LIG snowfall could help resolve this problem, pointing to the need for hydroclimate reconstructions from the region.


International Journal of Systematic and Evolutionary Microbiology | 2018

Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments

Rachel Chang; Lina J. Bird; Casey Barr; Magdalena R. Osburn; Elizabeth G. Wilbanks; Kenneth H. Nealson; Annette R. Rowe

A taxonomic and physiologic characterization was carried out on Thioclava strain ElOx9T, which was isolated from a bacterial consortium enriched on electrodes poised at electron donating potentials. The isolate is Gram-negative, catalase-positive and oxidase-positive; the cells are motile short rods. The bacterium is facultatively anaerobic with the ability to utilize nitrate as an electron acceptor. Autotrophic growth with H2 and S0 (oxidized to sulfate) was observed. The isolate also grows heterotrophically with organic acids and sugars. Growth was observed at salinities from 0 to 10% NaCl and at temperatures from 15 to 41 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs in the genus Thioclava; it had the highest sequence similarity of 98.8 % to Thioclava atlantica 13D2W-2T, followed by Thioclava dalianensis DLFJ1-1T with 98.5 % similarity, Thioclava pacifica TL 2T with 97.7 % similarity, and then Thioclava indica DT23-4T with 96.9 %. All other sequence similarities were below 97 % to characterized strains. The digital DNA-DNA hybridization estimated when compared to T. atlantica 13D2W-2T, T. dalianensis DLFJ1-1T, T. pacifica TL 2T and T. indica DT23-4T were 15.8±2.1, 16.7+2.1, 14.3±1.9 and 18.3±2.1 %. The corresponding average nucleotide identity values between these strains were determined to be 65.1, 67.8, 68.4 and 64.4 %, respectively. The G+C content of the chromosomal DNA is 63.4 mol%. Based on these results, a novel species Thioclava electrotropha sp. nov. is proposed, with the type strain ElOx9T (=DSM 103712T=ATCC TSD-100T).


Geobiology | 2018

Microbial diversity and biomarker analysis of modern freshwater microbialites from Laguna Bacalar, Mexico

D. B. Johnson; T. M. Flynn; Magdalena R. Osburn

Laguna Bacalar is a sulfate-rich freshwater lake on the Yucatan Peninsula that hosts large microbialites. High sulfate concentrations distinguish Laguna Bacalar from other freshwater microbialite sites such as Pavilion Lake and Alchichica, Mexico, as well as from other aqueous features on the Yucatan Peninsula. While cyanobacterial populations have been described here previously, this study offers a more complete characterization of the microbial populations and corresponding biogeochemical cycling using a three-pronged geobiological approach of microscopy, high-throughput DNA sequencing, and lipid biomarker analyses. We identify and compare diverse microbial communities of Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria that vary with location along a bank-to-bank transect across the lake, within microbialites, and within a neighboring mangrove root agglomeration. In particular, sulfate-reducing bacteria are extremely common and diverse, constituting 7%-19% of phylogenetic diversity within the microbialites, and are hypothesized to significantly influence carbonate precipitation. In contrast, Cyanobacteria account for less than 1% of phylogenetic diversity. The distribution of lipid biomarkers reflects these changes in microbial ecology, providing meaningful biosignatures for the microbes in this system. Polysaturated short-chain fatty acids characteristic of cyanobacteria account for <3% of total abundance in Laguna Bacalar microbialites. By contrast, even short-chain and monounsaturated short-chain fatty acids attributable to both Cyanobacteria and many other organisms including types of Alphaproteobacteria and Gammaproteobacteria constitute 43%-69% and 17%-25%, respectively, of total abundance in microbialites. While cyanobacteria are the largest and most visible microbes within these microbialites and dominate the mangrove root agglomeration, it is clear that their smaller, metabolically diverse associates are responsible for significant biogeochemical cycling in this microbialite system.


Geochimica et Cosmochimica Acta | 2011

Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities

Magdalena R. Osburn; Alex L. Sessions; C. P. Pepe-Ranney; John R. Spear


Chemical Geology | 2013

Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea)

D'Arcy R. Meyer-Dombard; Jan P. Amend; Magdalena R. Osburn

Collaboration


Dive into the Magdalena R. Osburn's collaboration.

Top Co-Authors

Avatar

Jan P. Amend

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alex L. Sessions

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D'Arcy R. Meyer-Dombard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John R. Spear

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kristin D. Bergmann

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lily Momper

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge