Magdalena Skonieczna
Silesian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalena Skonieczna.
Free Radical Biology and Medicine | 2014
Maria Widel; Aleksandra Krzywon; Karolina Gajda; Magdalena Skonieczna; Joanna Rzeszowska-Wolny
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.
Bioelectromagnetics | 2012
Rafał Jakub Bułdak; Renata Polaniak; Łukasz Bułdak; Krystyna Żwirska-Korczala; Magdalena Skonieczna; Aleksandra Monsiol; Michał Kukla; Anna Duława-Bułdak; Ewa Birkner
The aim of this study was to assess the influence of cisplatin and an extremely low frequency electromagnetic field (ELF-EMF) on antioxidant enzyme activity and the lipid peroxidation ratio, as well as the level of DNA damage and reactive oxygen species (ROS) production in AT478 carcinoma cells. Cells were cultured for 24 and 72 h in culture medium with cisplatin. Additionally, the cells were irradiated with 50 Hz/1 mT ELF-EMF for 16 min using a solenoid as a source of the ELF-EMF. The amount of ROS, superoxide dismutase (SOD) isoenzyme activity, glutathione peroxidase (GSH-Px) activity, DNA damage, and malondialdehyde (MDA) levels were assessed. Cells that were exposed to cisplatin exhibited a significant increase in ROS and antioxidant enzyme activity. The addition of ELF-EMF exposure to cisplatin treatment resulted in decreased ROS levels and antioxidant enzyme activity. A significant reduction in MDA concentrations was observed in all of the study groups, with the greatest decrease associated with treatment by both cisplatin and ELF-EMF. Cisplatin induced the most severe DNA damage; however, when cells were also irradiated with ELF-EMF, less DNA damage occurred. Exposure to ELF-EMF alone resulted in an increase in DNA damage compared to control cells. ELF-EMF lessened the effects of oxidative stress and DNA damage that were induced by cisplatin; however, ELF-EMF alone was a mild oxidative stressor and DNA damage inducer. We speculate that ELF-EMF exerts differential effects depending on the exogenous conditions. This information may be of value for appraising the pathophysiologic consequences of exposure to ELF-EMF.
Radiation Research | 2013
Yuriy Saenko; Artur Cieslar-Pobuda; Magdalena Skonieczna; Joanna Rzeszowska-Wolny
Free radicals generated by mitochondria are candidates for mediating long-lasting effects of radiation on cells, including genetic instability. To better understand the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in these long-term effects we assayed ROS and RNS levels, the mitochondrial membrane potential and mass, and the frequency of DNA strand breaks, apoptosis and necrosis in human leukemic cells (K562 and HL60) after 12 Gy of X irradiation. An increase in intracellular ROS level was observed immediately post-irradiation, and about 24 h later a second increase of ROS was accompanied by increase in nitrogen oxide, mitochondrial potential and mitochondrial mass in both cell types. The second peak of ROS level was partially inhibited by rotenone, an inhibitor of mitochondrial complex I, in K562 but not in HL60 cells suggesting that the sources of ROS differed in the two cell types. The frequency of DNA breaks showed kinetics similar to ROS levels, with a sharp peak immediately after irradiation and a second increase 24 and 48 h later, which was significantly higher in K562 cells. Forty-eight hours after irradiation an increase in the frequency of apoptotic cells was observed in both cell lines, which became larger and statistically significant in K562 cells after inhibition of mitochondrial complex I. Our results show that ionizing radiation activates cellular processes which produce long-lasting ROS and RNS radicals, which may have different sources in different cell types and could participate in cellular signaling networks important for radiosensitivity and mode of cell death.
The Scientific World Journal | 2012
Kamila Widziewicz; Joanna Kalka; Magdalena Skonieczna; Paweł Madej
Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.
Oncotarget | 2016
Artur Cieślar-Pobuda; Mehrdad Rafat; Viktoria Knoflach; Magdalena Skonieczna; Andrzej Hudecki; Andrzej Małecki; Elżbieta Urasińska; Seaid Ghavami; Marek J. Łos
The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches.
RSC Advances | 2014
Anna Mielańczyk; Magdalena Skonieczna; Katarzyna Bernaczek; Dorota Neugebauer
Well-defined star-shaped copolymers consisting of acetal derivatives of methyl α-D-glucopyranoside cores and polymethacrylate arms containing oxirane pendant groups have been modified with ethylenediamine (EDA) to form amphiphilic and water soluble polycations (positive zeta potential). Normal human dermal fibroblasts (NHDF) and human colon cancer cells (HCT-116) were employed to investigate the cellular uptake and cytotoxicity of diamine-functionalized star copolymers. Star-shaped polymers exhibited low cytotoxicity in NHDF cells, whereas in the case of HCT-116 cell line MTS assay resulted in the decrease of cell proliferation, which was also confirmed by Annexin-V assay indicating the increased rate of HCT-116 cell apoptosis. In the next step, the incorporated amine groups were applied for covalent conjugation of fluorescein isothiocyanate (FITC) with an efficiency of 60–85% estimated by 1H NMR. The additional conjugation experiments were performed by isothermal titration calorimetry (ITC) yielding 45–100% of polymer labeling by fluorescent FITC. The confocal laser scanning microscopy proved cell internalization of the fluorescein-conjugated star copolymers was successful. The model studies showed that this type of star copolymers can be promising carriers for the delivery of drugs.
Oxidative Medicine and Cellular Longevity | 2017
Magdalena Skonieczna; Tomasz Hejmo; Aleksandra Poterala-Hejmo; Artur Cieslar-Pobuda; Rafał Jakub Bułdak
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Bioconjugate Chemistry | 2016
Anna Mielańczyk; Magdalena Skonieczna; Łukasz Mielańczyk; Dorota Neugebauer
V-shaped and star-shaped hydroxylamine-functionalized polymethacrylates designed as nanosized conjugates (<120 nm) with anticancer agent, namely, doxorubicin (DOX), were evaluated in vitro toward their potential usage as drug delivery systems in breast cancer (MCF-7) treatment. Statistical analysis of MTS assay results showed that the 4-arm conjugate (n(DOX) = 16) was the most effective polymeric system against MCF-7/W (wild type) and MCF-7/R (DOX resistant) cell lines. Apoptosis assay analysis showed that MCF-7/R cells cultured with nonlinear copolymers died due to necrosis and late apoptotis, whereas MCF-7/W cells were in early and late apoptosis. Among all tested conjugates, the most promising results with induction of apoptosis without inducing necrosis in both MCF-7 cell lines were obtained for conjugate based on 4-arm stars with low content of DOX. The cell cycle assay revealed that increase of MMA units in 4-arm copolymers induced MCF-7/R cell arrest in the SubG1 phase. In the same cell line, the corresponding conjugates triggered S and G2/M arrest. Gradual internalization of the chosen conjugate by MCF-7/R cells was monitored via fluorescence microscopy showing its main localization in the cytoplasm.
European Journal of Histochemistry | 2014
Rafał Jakub Bułdak; Magdalena Skonieczna; Łukasz Bułdak; N. Matysiak; Łukasz Mielańczyk; G. Wyrobiec; Michał Kukla; Marek Michalski; Krystyna Żwirska-Korczala
The aim of the study was to assess the expression and subcellular localization of visfatin in HCT-116 colorectal carcinoma cells after cytokinesis failure using Cytochalasin B (CytB) and the mechanism of apoptosis of cells after CytB. We observed translocation of visfatin’s antigen in cytB treated colorectal carcinoma HCT-116 cells from cytosol to nucleus. Statistical and morphometric analysis revealed significantly higher area-related numerical density visfatin-bound nano-golds in the nuclei of cytB-treated HCT-116 cells compared to cytosol. Reverse relation to visfatin subcellular localization was observed in un-treated HCT-116 cells. The total amount of visfatin protein and visfatin mRNA level in HCT-116 cells was also decreased after CytB treatment. Additionally, CytB significantly decreased cell survival, increased levels of G2/M fractions, induced bi-nuclei formation as well as increased reactive oxygen species (ROS) level in HCT-116 cells. CytB treatment showed cytotoxic effect that stem from oxidative stress and is connected with the changes in the cytoplasmic/nuclear amount of visfatin in HCT-116 cells.
Free Radical Biology and Medicine | 2016
Martyna Modrzejewska; Maciej Gawronski; Magdalena Skonieczna; Ewelina Zarakowska; Marta Starczak; Marek Foksinski; Joanna Rzeszowska-Wolny; Daniel Gackowski; Ryszard Olinski
The most plausible mechanism behind active demethylation of 5-methylcytosine involves TET proteins which participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine; the latter is further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil can be also generated from thymine in a TET-catalyzed process. Ascorbate was previously demonstrated to enhance generation of 5-hydroxymethylcytosine in cultured cells. The aim of this study was to determine the levels of the abovementioned TET-mediated oxidation products of 5-methylcytosine and thymine after addition of ascorbate, using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Intracellular concentration of ascorbate was determined by means of ultra-performance liquid chromatography with UV detection. Irrespective of its concentration in culture medium (10-100µM) and inside the cell, ascorbate stimulated a moderate (2- to 3-fold) albeit persistent (up to 96-h) increase in the level of 5-hydroxymethylcytosine. However, exposure of cells to higher concentrations of ascorbate (100µM or 1mM) stimulated a substantial increase in 5-formylcytosine and 5-carboxycytosine levels. Moreover, for the first time we demonstrated a spectacular (up to 18.5-fold) increase in 5-hydroxymethyluracil content what, in turn, suggests that TET enzymes contributed to the presence of the modification in cellular DNA. These findings suggest that physiological concentrations of ascorbate in human serum (10-100µM) are sufficient to maintain a stable level of 5-hydroxymethylcytosine in cellular DNA. However, markedly higher concentrations of ascorbate (ca. 100µM in the cell milieu or ca. 1mM inside the cell) were needed to obtain a sustained increase in 5-formylcytosine, 5-carboxycytosine and 5-hydroxymethyluracil levels. Such feedback to elevated concentrations of ascorbate may reflect adaptation of the cell to environmental conditions.