Magdalena Victoria Monferrán
National University of Cordoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalena Victoria Monferrán.
Environmental Pollution | 2009
Magdalena Victoria Monferrán; José A. Sánchez Agudo; María L. Pignata; Daniel A. Wunderlin
Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5-100 microg L(-1)) applied for several days was assessed by measuring changes in the chlorophylls, phaeophytins, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 microg g(-1) dw after 7-days exposure at 100 microg L(-1), however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 microg L(-1) during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems.
Environmental Pollution | 2008
Silvia F. Pesce; Jimena Cazenave; Magdalena Victoria Monferrán; Silvia Frede; Daniel A. Wunderlin
We report the effect of lindane on fish experimentally exposed to lindane. Sublethal toxicity was assessed through (a) changes in histopathology; (b) the activity of GST in different organs; and (c) bioaccumulation in exposed fish. We present a survey on toxic effects of lindane at these three levels, proposing a sequence of dose-dependent effects. Physiological damage was reversible at lowest doses, but severe at the highest, including damage consistent with fibrosis in liver and karyolitic nucleus in brain of both studied species. Exposure of Jenynsia multidentata above 6 microg L(-1) caused activation a GST in liver and gills, followed by inhibition at 75 microg L(-1). Interestingly, the bioaccumulation rate was suddenly increased when GST was inhibited. Corydoras paleatus exposed to 6.0 microg L(-1) lindane did not present significant changes in GST activity; however, enzymatic inhibition was observed above 25 microg L(-1). The bioaccumulation rate in C. paleatus remained constant throughout the experiments. All in all, these results evidence that C. paleatus is more sensitive to lindane than J. multidentata.
Science of The Total Environment | 2011
Carolina Merlo; Adriana Abril; María Valeria Amé; G.A. Argüello; Hebe A. Carreras; M.S. Chiappero; Andrea Cecilia Hued; Eduardo D. Wannaz; Lucas Nicolás Galanti; Magdalena Victoria Monferrán; Claudia M. Gonzalez; V.M. Solís
The Suquía River lower-middle basin (Córdoba, Argentina) is subject to a strong anthropic impact because it receives pollutants from different sources (industries, wastewaters, heavy traffic, agricultural land use, etc.) We have assessed the degree of watershed degradation of Suquía River lower-middle sections through the analysis of different ecosystem compartments (air, water, riparian soil, sediments and biota), in order to provide useful data to be considered in future river restoration programs. Four study sites were selected along the river (La Calera city, Córdoba city, Corazón de María village and Río Primero city) which were sampled during the low- and high-water flow periods. We analyzed: a) chemical and physical characteristics of water, sediments, and riparian soil; b) heavy metal content of water and sediments, and c) semi-volatile organic compounds in air. Besides, pollutant bioindicators such as fish assemblages, lichens (Usnea amblyoclada), vascular plants (Tradescantia pallida), and microorganisms (fecal coliform and Escherichia coli) were used to further assess the status of the river. All analyzed ecological compartments were affected by water pollution, particularly, fish assemblages, sediments and riparian soils by heavy metal and coliform bacteria. Moreover, we detected a possible contribution of sulfur and a high pollutant content in air that merit further research about other air-water exchanges. Accordingly, we strongly suggest that an action to restore or remediate the anthropic effect on the Suquía River be extended to all possible compartments along the river.
Ecotoxicology and Environmental Safety | 2009
Valeska Contardo-Jara; Lucas Nicolás Galanti; María Valeria Amé; Magdalena Victoria Monferrán; Daniel A. Wunderlin; Claudia Wiegand
The golden mussel Limnoperna fortunei was used as a biomonitor of environmental pollution in the Suquía River basin around Córdoba City (Argentina). The sampling sites along the river were chosen according to their increasing levels of pollutants (e.g. heavy metals) as well as biological oxygen demand (BOD) and chemical oxygen demand (COD). A water quality index (WQI) was constructed from the interaction of several normalized factors that affect the aquatic environment, such as the mentioned pollutants and physico-chemical characteristics of the sampling sites. Activity changes of biotransformation enzyme glutathione S-transferase (GST) and the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT), after exposure to pollutants, served as biomarkers. Membrane bound GST and antioxidant enzymes responded at the most polluted sampling site within 1 day showing increased activities lasting for 4 days. Further sampling was restricted due to no survival of the animals. Antioxidant enzymes GPx, GR and CAT were sensitive responding to the different pollution scenarios, showing good correlation to the chemical characterization.
Environmental Pollution | 2013
Iara da Costa Souza; Ian Drumond Duarte; Natieli Q. Pimentel; Lívia Dorsch Rocha; Mariana Morozesk; Marina Marques Bonomo; Vinicius C. Azevedo; Camilo Dias Seabra Pereira; Magdalena Victoria Monferrán; Camilla Rozindo Dias Milanez; Silvia Tamie Matsumoto; Daniel A. Wunderlin; Marisa Narciso Fernandes
Two neotropical estuaries affected by different anthropogenic factors were studied. We report levels of metals and metalloids in water and sediment as well as their influence on genetic, biochemical and morphological biomarkers in the native fish Centropomus parallelus. Biomarkers reflected the fish health status. Multivariate statistics indicated both spatial and temporal changes in both water and sediment, which are linked to the elemental composition and health status of inhabitant fish, showing the biggest influence of surface water, followed by sediments and interstitial water. Bioaccumulation in fish muscle was useful to identify elements that were below detection limits in water, pointing out the risk of consuming fish exceeding allowance limits for some elements (As and Hg in this case). Multivariate statistics, including physical, chemical and biological issues, presents a suitable tool, integrating data from different origin allocated in the same estuary, which could be useful for future studies on estuarine systems.
Environmental Pollution | 2012
Magdalena Victoria Monferrán; María L. Pignata; Daniel A. Wunderlin
The aquatic macrophyte, Potamogeton pusillus was evaluated for the removal of Cu(2+) and Cr(+6) from aqueous solutions during 15 days phytoextraction experiments. Results show that P. pusillus is capable of accumulating substantial amount of Cu and Cr from individual solutions (either Cu(2+) or Cr(+6)). Significant correlations between metal removal and bioaccumulation were obtained. Roots and leaves accumulated the highest amount of Cu and Cr followed by stems. The bioaccumulation of Cr was significantly enhanced in the presence of Cu, showing a synergic effect on Cr(+6) removal, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Cr(+6) in presence of Cu(+2) and bioaccumulation of these heavy metals by P. pusillus.
Archives of Environmental Contamination and Toxicology | 2012
Tamara Maggioni; Andrea Cecilia Hued; Magdalena Victoria Monferrán; Rocío Inés Bonansea; Lucas Nicolás Galanti; María Valeria Amé
The Suquía River middle-lower basin (Córdoba, Argentina) is subject to a strong anthropogenic impact because it receives pollutants from different sources. Recent studies have shown the importance and the need of approaching the monitoring process of water quality from integral perspectives through the use of chemical as well as biological methods. The main goal of this study was to evaluate the fish species Jenynsia multidentata as a bioindicator of environmental pollution in the middle-lower basin of the Suquía River using biotransformation and antioxidant enzymes as well as gill and liver histopathology as biomarkers. We also studied the fish-assemblage characteristics through the fish species pattern variation and the application of a biotic index based on fish data. Our study also included the analysis of a water-quality index, heavy-metal concentrations in sediment and water, and pesticide concentrations in sediment. The chemical analyses of the middle-lower Suquía River basin showed a water-quality degradation gradient. Fish-assemblage structure changed with increasing water pollution, showing a simpler structure at the most polluted area. According to the bioitc index, the variation pattern of fish assemblages reflected the aquatic environmental deterioration. Both molecular and histopathological biomarkers reflected the same trend in relation to water quality. However, enzymes varied with more acute precision between seasons. In addition, each enzyme presented with different sensibility. At tissue level, the histopathological analysis detected chronic contamination at both stations and seasons. The present work, which comprises different levels of biological organization together with chemical analyses, generated particular although complementary information, thus evidencing the same trend of aquatic contamination. Thus, the development of integral investigations gives a comprehensive approach and becomes the most effective tool to construct policies both preventive and palliative. Our study constitutes a good model to be applied in other endorheic basins of South America.
Ecotoxicology and Environmental Safety | 2014
Julieta Griboff; David Morales; Lidwina Bertrand; Rocío Inés Bonansea; Magdalena Victoria Monferrán; Ramón Asis; Daniel A. Wunderlin; María Valeria Amé
The widespread contamination and persistence of the herbicide atrazine residues in the environment resulted in the exposure of non-target organisms. The present study was undertaken to investigate the effect of atrazine in the response of oxidative stress biomarkers in the freshwater shrimp Palaemonetes argentinus and the protective effect of vitamin-E against atrazine-induced toxicity. Therefore, two batches of P. argentinus were fed for 21 days with a commercial food enriched in proteins (D1) or with D2, composed of D1 enriched with vitamin-E (6.8 and 16.0mg% of vitamin-E, respectively). Subsequently, half of the individuals of each group were exposed to atrazine (0.4mgL(-1)) for 24h and the others remained as controls. Atrazine promoted oxidative stress response in P. argentinus fed with D1 as indicated by enhanced H2O2 content and induction of superoxide dismutase, glutathione-S-transferases and glutathione reductase. This antioxidant activity would prevent the increment of thiobarbituric acid reactive substances in the shrimp tissues. P. argentinus fed with D2 reversed the response of the biomarkers measured. However, the activation of antioxidants response had an energetic cost, which was revealed by a decrease in lipids storage in shrimps. These results show the modulatory effect of vit-E on oxidative stress and its potential use as an effective antioxidant to be applied in chemoprotection strategies during aquaculture.
Environmental Toxicology | 2008
Magdalena Victoria Monferrán; Silvia F. Pesce; Jimena Cazenave; Daniel A. Wunderlin
We report changes in activities of detoxification and antioxidant enzymes as well as lipid peroxidation levels in liver, gills, and brain of Jenynsia multidentata exposed to 1,2‐ and 1,4‐dichlorobenzene (DCB). Fish were captured at an unpolluted area, transported to the laboratory, and acclimated previous to experiments. Exposures were carried out using 1,2‐DCB at 0.5, 1, 5, and 10 mg L−1 and 1,4‐DCB at 0.05, 0.1, 1, and 5 mg L−1. After 24‐h exposure, fish were sacrificed and dissected separating liver, gills, and brain of each fish. Organs were used for enzyme extractions, evaluating antioxidant system through the assay of glutathione reductase, guaiacol peroxidase, glutathione peroxidase, catalase as well as detoxification system by measuring glutathione‐S‐transferase (GST) activity. Additionally, thiobarbituric acid reactive substances (TBARS) method was used to evaluate the peroxidation of lipids. No changes in GST activity were found in liver of fish exposed to DCBs but in gills and brain of exposed fish. The detoxification system was activated at lower concentrations of 1,2‐DCB than 1,4‐DCB. Antioxidant response is activated in liver at low DCB concentrations, followed by a drop at highest levels. We also found activation of the antioxidant system in gills and brain of exposed fish. On the other hand, we did not observe changes in TBARS concentrations in liver or gills of exposed fish with respect to controls, but in brain of fish exposed to 1,2‐DCB (≥0.5 mg L−1) and 1,4‐DCB (5 mg L−1). Responses of both detoxification and antioxidant systems of J. multidentata suggest that 1,2‐DCB is more toxic than 1,4‐DCB to this specie. To the extent of our knowledge, this is the first report of oxidative stress induced by DCBs in fish. Our results evidence that the brain is the organ most severely affected by the oxidative stress caused by DCBs.
Ecotoxicology and Environmental Safety | 2016
Magdalena Victoria Monferrán; Paola Lorena Garnero; Daniel A. Wunderlin; María de los Ángeles Bistoni
The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health.