Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maged Elkashlan is active.

Publication


Featured researches published by Maged Elkashlan.


IEEE Transactions on Communications | 2013

Transmit Antenna Selection for Security Enhancement in MIMO Wiretap Channels

Nan Yang; Phee Lep Yeoh; Maged Elkashlan; Robert Schober; Iain B. Collings

We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with NA antennas at the transmitter, NB antennas at the receiver, and NE antennas at the eavesdropper. We focus on the practical scenario where the transmitter does not have any channel state information (CSI) of the eavesdroppers channel. The transmitter selects a single antenna that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. The receiver and the eavesdropper employ either maximal-ratio combining (MRC) or selection combining (SC) to combine the received signals. For the proposed protocols, we derive new closed-form expressions for the probability of non-zero secrecy capacity. We consider Nakagami-m fading with non-identical fading parameters of the main channel, mB, and of the eavesdroppers channel, mE. Next, we derive new closed-form expressions for the exact secrecy outage probability, based on which the ε-outage secrecy capacity is characterized. Based on the exact expressions, we derive the asymptotic secrecy outage probability which accurately reveals the secrecy diversity order and the secrecy array gain. We confirm that the proposed protocols achieve identical secrecy diversity orders of NANBmB. An interesting conclusion is reached that this diversity order is independent of NE and mE. Furthermore, we prove that under the proposed protocols, the secrecy outage probability and the ε-outage secrecy capacity improve with increasing NA.


IEEE Communications Magazine | 2015

Safeguarding 5G wireless communication networks using physical layer security

Nan Yang; Lifeng Wang; Giovanni Geraci; Maged Elkashlan; Jinhong Yuan; Marco Di Renzo

The fifth generation (5G) network will serve as a key enabler in meeting the continuously increasing demands for future wireless applications, including an ultra-high data rate, an ultrawide radio coverage, an ultra-large number of devices, and an ultra-low latency. This article examines security, a pivotal issue in the 5G network where wireless transmissions are inherently vulnerable to security breaches. Specifically, we focus on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium and reaping the benefits offered by the disruptive technologies to 5G. Among various technologies, the three most promising ones are discussed: heterogenous networks, massive multiple-input multiple-output, and millimeter wave. On the basis of the key principles of each technology, we identify the rich opportunities and the outstanding challenges that security designers must tackle. Such an identification is expected to decisively advance the understanding of future physical layer security.


IEEE Communications Magazine | 2017

Application of Non-Orthogonal Multiple Access in LTE and 5G Networks

Zhiguo Ding; Yuanwei Liu; Jinho Choi; Qi Sun; Maged Elkashlan; Chih-Lin I; H. Vincent Poor

As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP LTE and is envisioned to be an essential component of 5G mobile networks. The key feature of NOMA is to serve multiple users at the same time/frequency/ code, but with different power levels, which yields a significant spectral efficiency gain over conventional orthogonal MA. The article provides a systematic treatment of this newly emerging technology, from its combination with MIMO technologies to cooperative NOMA, as well as the interplay between NOMA and cognitive radio. This article also reviews the state of the art in the standardization activities concerning the implementation of NOMA in LTE and 5G networks.


IEEE Journal on Selected Areas in Communications | 2016

Cooperative Non-orthogonal Multiple Access With Simultaneous Wireless Information and Power Transfer

Yuanwei Liu; Zhiguo Ding; Maged Elkashlan; H. Vincent Poor

In this paper, the application of simultaneous wireless information and power transfer (SWIPT) to nonorthogonal multiple access (NOMA) networks in which users are spatially randomly located is investigated. A new co-operative SWIPT NOMA protocol is proposed, in which near NOMA users that are close to the source act as energy harvesting relays to help far NOMA users. Since the locations of users have a significant impact on the performance, three user selection schemes based on the user distances from the base station are proposed. To characterize the performance of the proposed selection schemes, closed-form expressions for the outage probability and system throughput are derived. These analytical results demonstrate that the use of SWIPT will not jeopardize the diversity gain compared to the conventional NOMA. The proposed results confirm that the opportunistic use of node locations for user selection can achieve low outage probability and deliver superior throughput in comparison to the random selection scheme.


IEEE Communications Surveys and Tutorials | 2016

User Association in 5G Networks: A Survey and an Outlook

Dantong Liu; Lifeng Wang; Yue Chen; Maged Elkashlan; Kai-Kit Wong; Robert Schober; Lajos Hanzo

The fifth generation (5G) mobile networks are envisioned to support the deluge of data traffic with reduced energy consumption and improved quality of service (QoS) provision. To this end, key enabling technologies, such as heterogeneous networks (HetNets), massive multiple-input multiple-output (MIMO), and millimeter wave (mmWave) techniques, have been identified to bring 5G to fruition. Regardless of the technology adopted, a user association mechanism is needed to determine whether a user is associated with a particular base station (BS) before data transmission commences. User association plays a pivotal role in enhancing the load balancing, the spectrum efficiency, and the energy efficiency of networks. The emerging 5G networks introduce numerous challenges and opportunities for the design of sophisticated user association mechanisms. Hence, substantial research efforts are dedicated to the issues of user association in HetNets, massive MIMO networks, mmWave networks, and energy harvesting networks. We introduce a taxonomy as a framework for systematically studying the existing user association algorithms. Based on the proposed taxonomy, we then proceed to present an extensive overview of the state-of-the-art in user association algorithms conceived for HetNets, massive MIMO, mmWave, and energy harvesting networks. Finally, we summarize the challenges as well as opportunities of user association in 5G and provide design guidelines and potential solutions for sophisticated user association mechanisms.


IEEE Transactions on Vehicular Technology | 2012

Cognitive Amplify-and-Forward Relay Networks Over Nakagami-

Trung Quang Duong; Daniel Benevides da Costa; Maged Elkashlan; Vo Nguyen Quoc Bao

In this correspondence, the outage probability (OP) of dual-hop cognitive amplify-and-forward (AF) relay networks subject to independent non-identically distributed (i.n.i.d.) Nakagami-m fading is examined. We assume a spectrum-sharing environment, where two different strategies are proposed to determine the transmit powers of the secondary network. Specifically, the transmit power conditions of the proposed spectrum-sharing network are governed by either the combined power constraint of the interference on the primary network and the maximum transmission power at the secondary network or the single power constraint of the interference on the primary network. Closed-form lower bounds and asymptotic expressions for the OP are derived. Regardless of the transmit power constraint, we reveal that the diversity order is strictly defined by the minimum fading severity between the two hops of the secondary network. This aligns with the well-known result for conventional dual-hop AF relaying without spectrum sharing. Furthermore, the impact of the primary network on the diversity-multiplexing tradeoff is investigated. We confirm that the diversity-multiplexing tradeoff is independent of the primary network.


IEEE Signal Processing Letters | 2012

m

Trung Quang Duong; Phee Lep Yeoh; Vo Nguyen Quoc Bao; Maged Elkashlan; Nan Yang

We examine the impact of multiple primary transmitters and receivers (PU-TxRx) on the outage performance of cognitive decode-and-forward relay networks. In such a joint relaying/spectrum-sharing arrangement, we address fundamental questions concerning three key power constraints: 1) maximum transmit power at the secondary transmitter (SU-Tx), 2) peak interference power at the primary receivers (PU-Rx), and 3) interference power at SU-Rx caused by the primary transmitter (PU-Tx). Our answers to these are given in new analytical expressions for the exact and asymptotic outage probability of the secondary relay network. Based on our asymptotic expressions, important design insights into the impact of primary transceivers on the performance of cognitive relay networks is reached. We have shown that zero diversity order is attained when the peak interference power at the PU-Rx is independent of the maximum transmit power at the SU-Tx.


IEEE Wireless Communications Letters | 2015

Fading

Yuanwei Liu; Lifeng Wang; Tran Trung Duy; Maged Elkashlan; Trung Quang Duong

This letter proposes several relay selection policies for secure communication in cognitive decode-and-forward relay networks, where a pair of cognitive relays is opportunistically selected for security protection against eavesdropping. The first relay transmits the secrecy information to the destination, and the second relay, as a friendly jammer, transmits the jamming signal to confound the eavesdropper. We present new exact closed-form expressions for the secrecy outage probability. Our analysis and simulation results strongly support our conclusion that the proposed relay selection policies can enhance the performance of secure cognitive radio. We also confirm that the error floor phenomenon is created in the absence of jamming.


IEEE Transactions on Communications | 2016

Cognitive Relay Networks With Multiple Primary Transceivers Under Spectrum-Sharing

Yuanwei Liu; Lifeng Wang; Syed Ali Raza Zaidi; Maged Elkashlan; Trung Quang Duong

In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.


IEEE Transactions on Vehicular Technology | 2010

Relay Selection for Security Enhancement in Cognitive Relay Networks

Nan Yang; Maged Elkashlan; Jinhong Yuan

We evaluate the performance of downlink multiuser relay networks (MRNs) equipped with a single amplify-and-forward (AaF) relay. A thorough and exact analysis is conducted to analyze the outage probability of MRNs under dissimilar Nakagami-m fading conditions. More specifically, we derive new closed-form expressions for the outage probability and the probability density function (pdf) of the highest end-to-end signal-to-noise ratio (SNR) associated with the strongest destination with the single user and Rayleigh fading as special cases. In particular, we provide new results for channel-state information (CSI)-based-gain relaying and fixed-gain relaying. We then demonstrate that the achievable diversity order is equal to either the first-hop fading parameter or the product of the second-hop fading parameter and the number of destinations. Furthermore, we derive compact closed-form expressions for the moments of the highest end-to-end SNR, from which other moment-based measures such as the average SNR and the amount of fading are deduced. Our results highlight the performance improvements offered by opportunistic scheduling and reveal the impact of the relay location with unbalanced hops on the overall performance. Various numerical examples illustrate the proposed analysis.

Collaboration


Dive into the Maged Elkashlan's collaboration.

Top Co-Authors

Avatar

Trung Quang Duong

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arumugam Nallanathan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Lifeng Wang

University College London

View shared research outputs
Top Co-Authors

Avatar

Nan Yang

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuanwei Liu

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhong Yuan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yue Chen

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge