Magella M. Neveu
Moorfields Eye Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magella M. Neveu.
Investigative Ophthalmology & Visual Science | 2008
Isabelle Audo; Michel Michaelides; Anthony G. Robson; Marko Hawlina; Veronika Vaclavik; Jennifer M. Sandbach; Magella M. Neveu; Chris Hogg; David M. Hunt; Anthony T. Moore; Alan C. Bird; Andrew R. Webster; Graham E. Holder
PURPOSE To characterize the clinical, psychophysical, and electrophysiological phenotype of 19 patients with enhanced S-cone syndrome (ESCS) and relate the phenotype to the underlying genetic mutation. METHODS Patients underwent ophthalmic examination and functional testing including pattern ERG, full-field ERG, and long-duration and short-wavelength stimulation. Further tests were performed in some patients, including color contrast sensitivity (CCS), multifocal ERG, fundus autofluorescence imaging (FAI), optical coherence tomography (OCT), and fundus fluorescein angiography (FFA). Mutational screening of NR2E3 was undertaken in 13 patients. RESULTS The fundus appearance was variable, from normal to typical nummular pigment clumping at the level of the retinal pigment epithelium in older patients. Nine patients had foveal schisis, and one had peripheral schisis. Pattern ERG was abnormal in all patients. In all patients, ISCEV Standard photopic and scotopic responses had a similar waveform, the rod-specific-ERG was undetectable and the 30-Hz flicker ERG was markedly delayed with an amplitude lower than the photopic a-wave. Most ERG responses arose from short-wavelength-sensitive mechanisms, and a majority of patients showed possible OFF-related activity. Multifocal ERG showed relative preservation of central function, but reduced responses with increased eccentricity. Mutations were identified in NR2E3 in 12 of 13 patients including four novel variants. CONCLUSIONS The phenotype in ESCS is variable, both in fundus appearance and in the severity of the electrophysiological abnormalities. The ERGs are dominated by short-wavelength-sensitive mechanisms. The presence, in most of the patients, of possible OFF-related ERG activity is a finding not usually associated with S-cones.
Journal of Neurology, Neurosurgery, and Psychiatry | 2002
Antony B. Morland; Michael B. Hoffmann; Magella M. Neveu; G E Holder
The albino visual pathway is abnormal in that many fibres from the temporal retina project to the contralateral visual cortex. The visual projections in a human albino and a control have been investigated with fMRI and VEP during independent visual stimulation of both hemifields. Activity in the occipital cortex in the normal was contralateral to the stimulated visual field, whereas it was contralateral to the stimulated eye in the albino, independent of the stimulated visual field. Thus, the albino visual cortex is activated not only by stimulation in the contralateral visual field, but also by abnormal input representing the ipsilateral visual field. These novel findings help elucidate the nature of albino misrouting.
The Journal of Experimental Biology | 2011
Christopher R. Hogg; Magella M. Neveu; Karl-Arne Stokkan; Lars P. Folkow; Phillippa Cottrill; R. H. Douglas; David M. Hunt; Glen Jeffery
SUMMARY The Arctic has extreme seasonal changes in light levels and is proportionally UV-rich because of scattering of the shorter wavelengths and their reflection from snow and ice. Here we show that the cornea and lens in Arctic reindeer do not block all UV and that the retina responds electrophysiologically to these wavelengths. Both rod and cone photoreceptors respond to UV at low-intensity stimulation. Retinal RNA extraction and in vitro opsin expression show that the response to UV is not mediated by a specific UV photoreceptor mechanism. Reindeer thus extend their visual range into the short wavelengths characteristic of the winter environment and periods of extended twilight present in spring and autumn. A specific advantage of this short-wavelength vision is the use of potential information caused by differential UV reflections known to occur in both Arctic vegetation and different types of snow. UV is normally highly damaging to the retina, resulting in photoreceptor degeneration. Because such damage appears not to occur in these animals, they may have evolved retinal mechanisms protecting against extreme UV exposure present in the daylight found in the snow-covered late winter environment.
Ophthalmology | 2013
Ajoy Vincent; Anthony G. Robson; Magella M. Neveu; Genevieve A. Wright; Anthony T. Moore; Andrew R. Webster; Graham E. Holder
PURPOSE To compare the clinical phenotype and detailed electroretinographic parameters in X-linked retinoschisis (XLRS). DESIGN Retrospective, comparative study. PARTICIPANTS Fifty-seven patients (aged 1-67 years) with molecularly confirmed XLRS were clinically ascertained. METHODS Pattern electroretinography (PERG) and full-field electroretinography (ERG), incorporating international standard recordings, were performed in 44 cases. Thirteen patients, mostly pediatric, were tested using a simplified ERG protocol. On-Off and S-cone ERGs were performed in most adults. Fundus autofluorescence (FAF) imaging and optical coherence tomography (OCT) were available in 17 and 21 cases, respectively. MAIN OUTCOME MEASURES The clinical and electrophysiologic data associated with different types of mutation in the RS1 gene. RESULTS Forty-three patients had missense changes (group A), and 14 patients had nonsense, splice-site, or frame-shifting mutations in the RS1 gene (group B). The mean best-corrected visual acuity was better in group A than in group B (0.34 and 0.21, respectively). Fundus examination revealed foveal schisis in approximately half of both groups. The bright-flash dark-adapted (DA) ERG (11.0 candela.sec.m(-2)) waveform was electronegative in 62% of group A eyes and 100% of group B eyes. The photopic 30-Hz flicker ERG was delayed in all group B eyes and all except 6 group A eyes. On-Off ERG b-waves were subnormal in 39% of group A and 89% of group B eyes; d-waves were delayed in 14 eyes (group A = 10, group B = 4). S-cone ERGs were abnormal in 50% of both groups. The PERG was abnormal in 88% of group A and 100% of group B eyes. A spoke-wheel pattern of high and low intensity was the most common FAF abnormality observed. The OCT showed intraretinal schitic cavities in the majority of eyes. CONCLUSIONS There is profound phenotypic variability in patients with XLRS. Most patients have DA bright-flash ERGs with a low b:a ratio in keeping with inner retinal dysfunction. Generalized cone system dysfunction is common and associated with an abnormal On-response and less frequent additional Off-response involvement. Nonsense, splice-site, or frame-shifting mutations in RS1 consistently caused electronegative bright-flash ERG, delayed flicker response, and abnormal PERG; missense mutations result in a wider range of ERG abnormalities.
European Journal of Neuroscience | 2006
Magella M. Neveu; Graham E. Holder; Nicola Ragge; John J. Sloper; J. Richard O. Collin; Glen Jeffery
The optic chiasm is one of the most popular models for studying axon guidance. Here axons make a key binary decision either to cross the midline to innervate the contralateral hemisphere or to remain uncrossed. In rodents, midline interactions between axons from the two eyes are critical for normal development, as early removal of one eye systematically disrupts hemispheric projections from the remaining eye, increasing the crossed projection at the expense of the uncrossed. This is similar to the abnormal decussation pattern seen in albinos. This pattern is markedly different in marsupials where early eye removal has no impact on projections from the remaining eye. These differences are related to the location of the uncrossed projection through the chiasm. In rodents these axons approach the midline whereas in marsupials they remain segregated laterally. We provide anatomical evidence in man suggesting that, unlike in rodents, uncrossed axons are confined laterally and do not mix in each hemi‐chiasm, which is a pattern similar to that found in marsupials. Further, we demonstrate electrophysiologically, using visual cortical evoked potentials, that the failure of one eye to develop in man has no impact on the hemispheric projections from the remaining eye. These data demonstrate that the mechanisms regulating chiasmal development in man differ from those in rodents but may be similar to those in marsupials. We suggest that mouse models of the organization and development of the optic chiasm are not common to placental mammals in general.
European Journal of Neuroscience | 2003
Magella M. Neveu; Glen Jeffery; Linda C. Burton; John J. Sloper; Graham E. Holder
A deficiency of melanin in the retinal pigment epithelium, which regulates the development of neural retina, leads to chiasmal misrouting such that the uncrossed pathway (to the ipsilateral hemisphere) is reduced relative to the crossed pathway (to the contralateral hemisphere). This study examines age‐related changes in the flash and pattern appearance visual evoked potentials (VEP) of human albinos. Scalp recorded cortical VEPs to flash (FVEP) and pattern appearance stimulation were recorded in 58 albino (8 months to 60 years) and 34 normal subjects (4–55 years). VEPs were analysed by amplitude and latency. The contralateral hemisphere FVEP amplitude decreased with age in albino subjects, as in both hemispheres in normals. However, the ipsilateral hemisphere FVEP amplitude was significantly lower in young albino subjects, initially giving a marked interhemispheric asymmetry, but this normalized with age. Significant interhemispheric FVEP latency asymmetries were not observed. The contralateral pattern appearance VEP latency in albino subjects decreased with age, as in both hemispheres in normals; the ipsilateral latency increased significantly with age. Significant interhemispheric pattern appearance VEP amplitude asymmetries were not observed. These novel and unexpected observations indicate significant age‐related changes in the retinocortical pathways of the human albino. These changes have implications for our understanding of development and plasticity of the central visual pathways.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Karl-Arne Stokkan; Lars P. Folkow; Juliet Dukes; Magella M. Neveu; Chris Hogg; Sandra Siefken; Steven C. Dakin; Glen Jeffery
Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.
European Journal of Neuroscience | 2005
Magella M. Neveu; Graham E. Holder; John J. Sloper; Glen Jeffery
A failure of human foveal development only occurs in two genetically determined conditions; aniridia (Pax6 mutation) and albinism (tyrosinase mutation). The chiasmatic pathways from this region are disrupted in albinism and central retinal blood vessel patterns are abnormal. It is assumed that these three abnormalities have a common mechanism. Here we investigate whether similar abnormalities are present in subjects with aniridia. Using fundus photographs it is shown that abnormal blood vessel patterns are present in aniridia, but these significantly differ from those in albinos. Using electrophysiological techniques, abnormal hemispheric projections through the chiasm are demonstrated in albinos, but aniridics do not differ from normal subjects. These results demonstrate that although mutations in Pax6 and tyrosinase both affect central retinal development, they have a fundamentally different impact on the formation of the retinal vasculature and the projections from this region. This strongly suggests that separate mechanisms regulate the development of the central retina and decussation patterns at the optic chiasm.
The Journal of Comparative Neurology | 2008
Magella M. Neveu; Elisabeth A. H. von dem Hagen; Antony B. Morland; Glen Jeffery
The foveal region contains the highest cell density in the human retina; consequently a disproportionately large area of the visual cortex is dedicated to its representation. In aniridia and albinism the fovea does not develop, and the corresponding cortical representation shows a reduction in gray matter volume. In albinos there are chiasmatic irregularities in the hemispheric projections, which are not found in aniridics. Here, we ask whether the anomalies in central retinal development, present in albinism and aniridia, have a wider impact on the architecture of the visual cortex. The length, depth, and topology of the calcarine fissure is analyzed in albino, aniridic, and normal subjects. These measures are compared between groups and between the cortical hemispheres within each subject. We show that the calcarine fissure, where the primary visual cortex is represented, is abnormally short in those lacking a fovea. Moreover, surface reconstructions of the calcarine fissure revealed marked interhemispheric asymmetries. The two groups could not be distinguished on the basis of their cortical features, and we therefore interpret the abnormalities in cortical architecture in terms of the absence of the fovea, the common retinal feature found in both groups. J. Comp. Neurol. 506:791–800, 2008.
Journal of Vision | 2009
Magella M. Neveu; Glen Jeffery; Anthony T. Moore; Steven C. Dakin
Albino mammals exhibit a range of visual deficits including disrupted hemispheric pathways, an underdeveloped central retina, and nystagmus. Recently, it has been reported that albino animals also show deficits in the processing of visual motion, exhibiting higher motion coherence thresholds (MCTs; the proportion of coherently moving elements within a field of randomly moving distracters required to reliably report direction). Here we compare MCTs-collected from human observers with albinism-with an equivalent noise analysis of their fine-direction discrimination and report that their loss in motion sensitivity operates at both the level of local motion processing (of small objects) and at the later stage of global motion pooling. We also compare results from observers with aniridia (characterized by underdeveloped central retina and nystagmus but normal hemispheric visual pathways) and a rare group of observers with albinism who show no nystagmus. For the observers tested, nystagmus proved to be a common feature of individuals showing elevated MCTs. Since it is likely that motion perception is influenced by environmental factors early in development we postulate that the effect of congenital nystagmus on the temporal structure of the natural visual diet disrupts the ability of motion pathways to form normally.