Maggie L. Kalev-Zylinska
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maggie L. Kalev-Zylinska.
Blood | 2009
Enid Yi Ni Lam; Jackie Y.M. Chau; Maggie L. Kalev-Zylinska; Timothy M. Fountaine; R. Scott Mead; Christopher J. Hall; Philip S. Crosier; Kathryn E. Crosier; Maria Vega Flores
The transcription factor Runx1 is essential for the development of definitive hematopoietic stem cells (HSCs) during vertebrate embryogenesis and is transcribed from 2 promoters, P1 and P2, generating 2 major Runx1 isoforms. We have created 2 stable runx1 promoter zebrafish-transgenic lines that provide insight into the roles of the P1 and P2 isoforms during the establishment of definitive hematopoiesis. The Tg(runx1P1:EGFP) line displays fluorescence in the posterior blood island, where definitive erythromyeloid progenitors develop. The Tg(runx1P2:EGFP) line marks definitive HSCs in the aorta-gonad-mesonephros, with enhanced green fluorescent protein-labeled cells later populating the pronephros and thymus. This suggests that a function of runx1 promoter switching is associated with the establishment of discrete definitive blood progenitor compartments. These runx1 promoter-transgenic lines are novel tools for the study of Runx1 regulation and function in normal and malignant hematopoiesis. The ability to visualize and isolate fluorescently labeled HSCs should contribute to further elucidating the complex regulation of HSC development.
Developmental Dynamics | 2003
Maggie L. Kalev-Zylinska; Julia A. Horsfield; Maria Vega Flores; John H. Postlethwait; Jackie Y.M. Chau; Peter Malcolm Cattin; Maria R. Vitas; Philip S. Crosier; Kathryn E. Crosier
We cloned zebrafish runx3/aml2/cbfa3 and examined its expression and function during embryogenesis. In the developing embryo, runx3 is dynamically expressed in hematopoietic, neuronal, and cartilaginous tissues. Hematopoietic expression of runx3 commences late in embryogenesis in the ventral tail intermediate cell mass and later colocalizes with spi1 and lyz in circulating blood cells. In the cloche mutant, hematopoietic expression was absent, suggesting that Runx3 functions downstream of cloche in a hematopoietic pathway. Neuronal tissues expressing runx3 include the trigeminal ganglia and Rohon‐Beard neurons. Runx3 appears to contribute to normal development of primitive and definitive hematopoietic cells. When Runx3 function was compromised using morpholino oligonucleotides, a reduction in the number of mature blood cells was observed. Furthermore, Runx3 depletion decreased runx1 expression in the ventral wall of the dorsal aorta and reduced the number of spi1‐ and lyz‐containing blood cells. Conversely, ubiquitous overexpression of runx3 led to an increase in primitive blood cell numbers, together with an increase in runx1‐expressing cells in the ventral wall of the dorsal aorta. We propose a role for Runx3 in the regulation of blood cell numbers. Developmental Dynamics, 2003.
The Journal of Neuroscience | 2007
Maggie L. Kalev-Zylinska; Matthew J. During
Epidemiological studies have suggested a negative correlation between alcohol intake and Alzheimers disease. In vitro, ethanol negatively modulates NMDA receptor function. We hypothesized that chronic moderate alcohol intake leads to improved memory via adaptive responses in the expression of NMDA receptors and downstream signaling. We fed liquid diets containing no, moderate, or high amounts of ethanol to control and matched rats with hippocampal knock-down of the NR1 subunit. Rats with increased hippocampal NR1 expression were also generated to determine whether they had a phenotype similar to that of ethanol-fed animals. We found that moderate ethanol intake improved memory, increased NR1 expression, and changed some aspects of neurotrophin signaling. NR1 knock-down prevented ethanols facilitatory effects, whereas hippocampal NR1 overexpression mimicked the effect of chronic low-dose ethanol intake on memory. In contrast, high-dose ethanol reduced neurogenesis, inhibited NR2B expression, and impaired visual memory. In conclusion, adaptive changes in hippocampal NMDA receptor expression may contribute to the positive effects of ethanol on cognition.
Molecular and Cellular Neuroscience | 2009
Maggie L. Kalev-Zylinska; Wymond Symes; Deborah Young; Matthew J. During
The N-methyl-d-aspartate receptor (NMDAR) is critically involved in learning and memory, neuronal survival, as well as neuroexcitotoxicity and seizures. We hypothesize that even mild reductions in the numbers of hippocampal NMDARs could impair learning and memory, whereas increasing receptor activity would facilitate learning but reduce seizure threshold. We developed novel gene transfer strategies assisted by an adeno-associated viral vector 1/2 to bi-directionally modulate expression levels of the NR1 protein in rat hippocampus. Functional consequences of the altered NR1 expression were examined in the acute seizure model, and on normal processes of fear memory and neurogenesis. We found that knocking down NR1 protected against seizures at the expense of impaired learning, as predicted. Paradoxically, NR1 overexpression not only increased fear memory and neurogenesis, but also delayed onset of more severe seizures. In conclusion, the observed consequences of NR1 knockdown and overexpression underscore NMDAR requirement for neuronal plasticity, and are in agreement with its dichotomous functions.
Stroke | 2013
Maggie L. Kalev-Zylinska; Wymond Symes; Kevin C.E. Little; Peng Sun; Daying Wen; Linzi Qiao; Deborah Young; Matthew J. During; P. Alan Barber
Background and Purpose— Antibodies against neuronal antigens develop in patients after stroke and some may serve as biomarkers of neuronal injury. We aimed to determine whether antibodies against subunit 1 (GluN1) of the N-methyl-D-aspartate receptor also develop after stroke and if so, whether they correlate with stroke characteristics. Methods— Forty-eight patients with ischemic stroke and 96 healthy controls were tested for the presence of serum antibodies targeting GluN1. Testing was conducted using 20-kDa recombinant GluN1-S2 peptide (by ELISA and Western blotting) and on rat brain tissue (by Western blotting and immunohistochemistry). Clinical examinations and computed tomographic brain scans were performed to assess clinical state and infarct size and location. Results— Of the 48 patients with ischemic stroke, 21 (44%) had antibodies that reacted with the recombinant GluN1-S2. There was no evidence of antibody binding to intact GluN1 in brain tissue. Western blot appearances suggested reactivity with GluN1 degradation products. Patients with anti–GluN1-S2 antibodies were more likely to have higher National Institutes of Health Stroke Scale scores, larger infarcts, and more frequent cortical involvement. Of the 96 controls, only 3 (3%), all aged >50 years, had antibodies that reacted with GluN1-S2 at low levels. Conclusions— Antibodies that bind recombinant GluN1-S2 peptides (but not the intact GluN1 protein) develop transiently in patients after stroke in proportion to infarct size, suggesting that these antibodies are raised secondarily to neuronal damage. The anti–GluN1-S2 antibodies may provide useful information about the presence and severity of cerebral infarction. This will require confirmation in larger studies.
Cellular Signalling | 2015
Tania Kamal; Taryn N. Green; Marie-Christine Morel-Kopp; Christopher Ward; Ailsa McGregor; Susan R. McGlashan; Stefan K. Bohlander; Peter Browett; Lochie Teague; Matthew J. During; Tim Skerry; Emma C. Josefsson; Maggie L. Kalev-Zylinska
Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100μM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100μM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20μM and 36μM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts.
Frontiers in Oncology | 2014
Stacey Ann N D'mello; Jack U. Flanagan; Taryn N. Green; Euphemia Leung; Marjan E. Askarian-Amiri; Wayne R. Joseph; Michael R. McCrystal; Richard J. Isaacs; James H. F. Shaw; Christopher E. Furneaux; Matthew J. During; Graeme J. Finlay; Bruce C. Baguley; Maggie L. Kalev-Zylinska
Previous whole-exome sequencing has demonstrated that melanoma tumors harbor mutations in the GRIN2A gene. GRIN2A encodes the regulatory GluN2A subunit of the glutamate-gated N-methyl-d-aspartate receptor (NMDAR), involvement of which in melanoma remains undefined. Here, we sequenced coding exons of GRIN2A in 19 low-passage melanoma cell lines derived from patients with metastatic melanoma. Potential mutation impact was evaluated in silico, including within the GluN2A crystal structure, and clinical correlations were sought. We found that of 19 metastatic melanoma tumors, four (21%) carried five missense mutations in the evolutionarily conserved domains of GRIN2A; two were previously reported. Melanoma cells that carried these mutations were treatment-naïve. Sorting intolerant from tolerant analysis predicted that S349F, G762E, and P1132L would disrupt protein function. When modeled into the crystal structure of GluN2A, G762E was seen to potentially alter GluN1–GluN2A interactions and ligand binding, implying disruption to NMDAR functionality. Patients whose tumors carried non-synonymous GRIN2A mutations had faster disease progression and shorter overall survival (P < 0.05). This was in contrast to the BRAF V600E mutation, found in 58% of tumors but showing no correlation with clinical outcome (P = 0.963). Although numbers of patients in this study are small, and firm conclusions about the association between GRIN2A mutations and poor clinical outcome cannot be drawn, our results highlight the high prevalence of GRIN2A mutations in metastatic melanoma and suggest for the first time that mutated NMDARs impact melanoma progression.
Platelets | 2017
Taryn N. Green; Justin R. Hamilton; Marie-Christine Morel-Kopp; Zhaohua Zheng; Ting Yu T Chen; James I. Hearn; Peng P. Sun; Jack U. Flanagan; Deborah Young; P. Alan Barber; Matthew J. During; Christopher Ward; Maggie L. Kalev-Zylinska
Abstract GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear. This study investigated whether anti-GluN1-mediated neuroprotection involves inhibition of platelet function. Four commercial anti-GluN1 antibodies were screened for their abilities to inhibit human platelet aggregation. Haematological parameters were examined in rats vaccinated with GluN1. Platelet effects of a mouse monoclonal antibody targeting the glycine-binding region of GluN1 (GluN1-S2) were tested in assays of platelet activation, aggregation and thrombus formation. The epitope of anti-GluN1-S2 was mapped and the mechanism of antibody action modelled using crystal structures of GluN1. Our work found that rats vaccinated with GluN1 had a mildly prolonged bleeding time and carried antibodies targeting mostly GluN1-S2. The monoclonal anti-GluN1-S2 antibody (from BD Biosciences) inhibited activation and aggregation of human platelets in the presence of adrenaline, adenosine diphosphate, collagen, thrombin and a protease-activated receptor 1-activating peptide. When human blood was flowed over collagen-coated surfaces, anti-GluN1-S2 impaired thrombus growth and stability. The epitope of anti-GluN1-S2 was mapped to α-helix H located within the glycine-binding clamshell of GluN1, where the antibody binding was computationally predicted to impair opening of the NMDAR channel. Our results indicate that anti-GluN1-S2 inhibits function of human platelets, including dense granule release and thrombus growth. Findings add to the evidence that platelet NMDARs regulate thrombus formation and suggest a novel mechanism by which anti-GluN1 autoantibodies limit stroke-induced neuronal damage.
Research and Practice in Thrombosis and Haemostasis | 2018
Tania Kamal; Taryn N. Green; James I. Hearn; Emma C. Josefsson; Marie-Christine Morel-Kopp; Christopher Ward; Matthew J. During; Maggie L. Kalev-Zylinska
Essentials Intracellular calcium pathways regulate megakaryopoiesis but details are unclear. We examined effects of NMDAR‐mediated calcium influx on normal and leukemic cells in culture. NMDARs facilitated differentiation of normal but proliferation of leukemic megakaryocytes. NMDAR inhibitors induced differentiation of leukemic Meg‐01 cells.
Cell Calcium | 2016
Stacey Ann N. D’mello; Wayne R. Joseph; Taryn N. Green; Euphemia Leung; Matthew J. During; Graeme J. Finlay; Bruce C. Baguley; Maggie L. Kalev-Zylinska
GRIN2A mutations are frequent in melanoma tumours but their role in disease is not well understood. GRIN2A encodes a modulatory subunit of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that certain GRIN2A mutations increase NMDAR function and support melanoma growth through oncogenic effects. This hypothesis was tested using 19 low-passage melanoma cell lines, four of which carried novel missense mutations in GRIN2A that we previously reported. We examined NMDAR expression, function of a calcium ion (Ca2+) channel and its contribution to cell growth using pharmacological modulators; findings were correlated with the presence or absence of GRIN2A mutations. We found that NMDAR expression was low in all melanoma cell lines, independent of GRIN2A mutations. In keeping with this, NMDAR-mediated Ca2+ influx and its contribution to cell proliferation were weak in most cell lines. However, certain GRIN2A mutations and culture media with lower glutamate levels enhanced NMDAR effects on cell growth and invasion. The main finding was that G762E was associated with higher glutamate-mediated Ca2+ influx and stronger NMDAR contribution to cell proliferation, compared with wild-type GRIN2A and other GRIN2A mutations. The pro-invasive phenotype of mutated cell lines was increased in culture medium containing less glutamate, implying environmental modulation of mutation effects. In conclusion, NMDAR ion channel function is low in cultured melanoma cells but supports cell proliferation and invasion. Selected GRIN2A mutations, such as G762E, are associated with oncogenic consequences that can be modulated by extracellular glutamate. Primary cultures may be better suited to determine the role of the NMDAR in melanoma in vivo.