Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Höök is active.

Publication


Featured researches published by Magnus Höök.


Trends in Microbiology | 1998

Surface protein adhesins of Staphylococcus aureus

Timothy J. Foster; Magnus Höök

Staphylococcus aureus can colonize the host to initiate infection by adhering to components of the extracellular matrix. Adherence is mediated by surface protein adhesins (MSCRAMMs). Ligand binding by these fibronectin-, fibrinogen- and collagen-binding proteins occurs by distinct mechanisms that are being investigated at the molecular level.


Cellular Microbiology | 2001

Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells

Ruth C. Massey; Maria Kantzanou; Trent Fowler; Nicholas P. J. Day; Karin Schofield; Elisabeth R. Wann; Anthony R. Berendt; Magnus Höök; Sharon J Peacock

Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains.

Richard J. Bingham; Enrique Rudiño-Piñera; Nicola A. G. Meenan; Ulrich Schwarz-Linek; Johan P. Turkenburg; Magnus Höök; Elspeth F. Garman; Jennifer R. Potts

Staphylococcus aureus can adhere to and invade endothelial cells by binding to the human protein fibronectin (Fn). FnBPA and FnBPB, cell wall-attached proteins from S. aureus, have multiple, intrinsically disordered, high-affinity binding repeats (FnBRs) for Fn. Here, 30 years after the first report of S. aureus/Fn interactions, we present four crystal structures that together comprise the structures of two complete FnBRs, each in complex with four of the N-terminal modules of Fn. Each ≈40-residue FnBR forms antiparallel strands along the triple-stranded β-sheets of four sequential F1 modules (2–5F1) with each FnBR/2–5F1 interface burying a total surface area of ≈4,300 Å2. The structures reveal the roles of residues conserved between S. aureus and Streptococcus pyogenes FnBRs and show that there are few linker residues between FnBRs. The ability to form large intermolecular interfaces with relatively few residues has been proposed to be a feature of disordered proteins, and S. aureus/Fn interactions provide an unusual illustration of this efficiency.


Molecular Microbiology | 2011

Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity

Jenny A. Hyde; Eric H. Weening; MiHee Chang; Jerome P. Trzeciakowski; Magnus Höök; Jeffrey D. Cirillo; Jon T. Skare

The aetiological agent of Lyme disease, Borrelia burgdorferi, is transmitted via infected Ixodes spp. ticks. Infection, if untreated, results in dissemination to multiple tissues and significant morbidity. Recent developments in bioluminescence technology allow in vivo imaging and quantification of pathogenic organisms during infection. Herein, luciferase‐expressing B.u2003burgdorferi and strains lacking the decorin adhesins DbpA and DbpB, as well as the fibronectin adhesin BBK32, were quantified by bioluminescent imaging to further evaluate their pathogenic potential in infected mice. Quantification of bacterial load was verified by quantitative PCR (qPCR) and cultivation. B.u2003burgdorferi lacking DbpA and DbpB were only seen at the 1u2003h time point post infection, consistent with its low infectivity phenotype. The bbk32 mutant exhibited a significant decrease in its infectious load at day 7 relative to its parent. This effect was most pronounced at lower inocula and imaging correlated well with qPCR data. These data suggest that BBK32‐mediated binding plays an important role in B.u2003burgdorferi colonization. As such, in vivo imaging of bioluminescent Borrelia provides a sensitive means to detect, quantify and temporally characterize borrelial dissemination in a non‐invasive, physiologically relevant environment and, more importantly, demonstrated a quantifiable infectivity defect for the bbk32 mutant.


Journal of Biological Chemistry | 2011

Structural and Biochemical Characterization of Staphylococcus aureus Clumping Factor B/Ligand Interactions

Vannakambadi K. Ganesh; E. Magda Barbu; Champion Deivanayagam; Binh V. Le; Analiesa S. Anderson; Yury V. Matsuka; Shuo L. Lin; Timothy J. Foster; Sthanam V. L. Narayana; Magnus Höök

Clumping factor B (ClfB) from Staphylococcus aureus is a bifunctional protein that binds to human cytokeratin 10 (K10) and fibrinogen (Fg). ClfB has been implicated in S. aureus colonization of nasal epithelium and is therefore a key virulence factor. People colonized with S. aureus are at an increased risk for invasive staphylococcal disease. In this study, we have determined the crystal structures of the ligand-binding region of ClfB in an apo-form and in complex with human K10 and Fg α-chain-derived peptides, respectively. We have determined the structures of MSCRAMM binding to two ligands with different sequences in the same site showing the versatile nature of the ligand recognition mode of microbial surface components recognizing adhesive matrix molecules. Both ligands bind ClfB by parallel β-sheet complementation as observed for the clumping factor A·γ-chain peptide complex. The β-sheet complementation is shorter in the ClfB·Fg α-chain peptide complex. The structures show that several residues in ClfB are important for binding to both ligands, whereas others only make contact with one of the ligands. A common motif GSSGXG found in both ligands is part of the ClfB-binding site. This motif is found in many human proteins thus raising the possibility that ClfB recognizes additional ligands.


Infection and Immunity | 2011

Genomic and Surface Proteomic Analysis of the Canine Pathogen Staphylococcus pseudintermedius Reveals Proteins That Mediate Adherence to the Extracellular Matrix

Jeanette Bannoehr; Nouri L. Ben Zakour; Mark Reglinski; Neil F. Inglis; Sabitha Prabhakaran; Even Fossum; David George Emslie Smith; Gillian J. Wilson; Robyn A. Cartwright; Juergen Haas; Magnus Höök; Adri H. M. van den Broek; Keith L. Thoday; J. Ross Fitzgerald

ABSTRACT Cell wall-associated (CWA) proteins made by Gram-positive pathogens play a fundamental role in pathogenesis. Staphylococcus pseudintermedius is a major animal pathogen responsible for the canine skin disease bacterial pyoderma. Here, we describe the bioinformatic analysis of the family of 18 predicted CWA proteins encoded in the genome of S. pseudintermedius strain ED99 and determine their distribution among a phylogenetically diverse panel of S. pseudintermedius clinical isolates and closely related species of the Staphylococcus intermedius group. In parallel, we employed a proteomic approach to identify proteins presented on the surface of strain ED99 in vitro, revealing a total of 60 surface-localized proteins in one or more phases of growth, including 6 of the 18 genome-predicted CWA proteins. Based on these analyses, we selected two CWA proteins (SpsD and SpsL) encoded by all strains examined and investigated their capacity to mediate adherence to extracellular matrix proteins. We discovered that SpsD and SpsL mediated binding of a heterologous host, Lactococcus lactis, to fibrinogen and fibronectin and that SpsD mediated binding to cytokeratin 10, a major constituent of mammalian skin. Of note, the interaction with fibrinogen was host-species dependent, suggestive of a role for SpsD and SpsL in the host tropism of S. pseudintermedius. Finally, we identified IgG specific for SpsD and SpsL in sera from dogs with bacterial pyoderma, implying that both proteins are expressed during infection. The combined genomic and proteomic approach employed in the current study has revealed novel host-pathogen interactions which represent candidate therapeutic targets for the control of bacterial pyoderma.


Blood | 2013

Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia.

Matthew J. Flick; Xinli Du; Joni M. Prasad; Harini Raghu; Joseph S. Palumbo; Emanuel Smeds; Magnus Höök; Jay L. Degen

Fibrinogen can support host antimicrobial containment/clearance mechanisms, yet selected pathogens appear to benefit from host procoagulants to drive bacterial virulence. Here, we explored the hypothesis that host fibrin(ogen), on balance, supports Staphylococcus aureus infection in the context of septicemia. Survival studies following intravenous infection in control and fibrinogen-deficient mice established the overall utility of host fibrin(ogen) to S. aureus virulence. Complementary studies in mice expressing mutant forms of fibrinogen-retaining clotting function, but lacking either the bacterial ClfA (Fibγ(Δ5)) binding motif or the host leukocyte integrin receptor αMβ2 (Fibγ(390-396A)) binding motif, revealed the preeminent importance of the bacterial ClfA-fibrin(ogen) interaction in determining host survival. Studies of mice lacking platelets or the platelet integrin receptor subunit αIIb established that the survival benefits observed in Fibγ(Δ5) mice were largely independent of platelet αIIbβ3-mediated engagement of fibrinogen. Fibγ(Δ5) mice exhibited reduced bacterial burdens in the hearts and kidneys, a blunted host proinflammatory cytokine response, diminished microscopic tissue damage, and significantly diminished plasma markers of cardiac and other organ damage. These findings indicate that host fibrin(ogen) and bacterial ClfA are dual determinants of virulence and that therapeutic interventions at the level of fibrinogen could be advantageous in S. aureus septicemia.


Journal of Biological Chemistry | 2011

Cooperative binding and activation of fibronectin by a bacterial surface protein.

Zoe R. Marjenberg; Ian R. Ellis; Robert M. Hagan; Sabitha Prabhakaran; Magnus Höök; Susanne R. Talay; Jennifer R. Potts; David Staunton; Ulrich Schwarz-Linek

Integrin-dependent cell invasion of some pathogenic bacteria is mediated by surface proteins targeting the extracellular matrix protein fibronectin (FN). Although the structural basis for bacterial FN recognition is well understood, it has been unclear why proteins such as streptococcal SfbI contain several FN-binding sites. We used microcalorimetry to reveal cooperative binding of FN fragments to arrays of binding sites in SfbI. In combination with thermodynamic analyses, functional cell-based assays show that SfbI induces conformational changes in the N-terminal 100-kDa region of FN (FN100kDa), most likely by competition with intramolecular interactions defining an inactive state of FN100kDa. This study provides insights into how long range conformational changes resulting in FN activation may be triggered by bacterial pathogens.


PLOS Pathogens | 2016

Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

Brandon L. Garcia; Hui Zhi; Beau Wager; Magnus Höök; Jon T. Skare

Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.


Journal of Biomedical Materials Research Part A | 2012

Augmenting the articular cartilage-implant interface: functionalizing with a collagen adhesion protein

Aliza A. Allon; Kenneth W. Ng; Sommer Hammoud; Brooke H. Russell; Casey M. Jones; José Rivera; Jeffrey Schwartz; Magnus Höök; Suzzane A. Maher

The lack of integration between implants and articular cartilage is an unsolved problem that negatively impacts the development of treatments for focal cartilage defects. Many approaches attempt to increase the number of matrix-producing cells that can migrate to the interface, which may help to reinforce the boundary over time but does not address the problems associated with an initially unstable interface. The objective of this study was to develop a bioadhesive implant to create an immediate bond with the extracellular matrix components of articular cartilage. We hypothesized that implant-bound collagen adhesion protein (CNA) would increase the interfacial strength between a poly(vinly alcohol) implant and an articular cartilage immediately after implantation, without preventing cell migration into the implant. By way of a series of in vitro immunohistochemical and mechanical experiments, we demonstrated that (i) free CNA can bind to articular cartilage, (ii) implant-bound CNA can bind to collagen type II and (iii) implants functionalized with CNA result in a fourfold increase in interfacial strength with cartilage relative to untreated implants at day zero. Of note, the interfacial strength significantly decreased after 21 days in culture, which may be an indication that the protein itself has lost its effectiveness. Our data suggest that functionalizing scaffolds with CNA may be a viable approach toward creating an initially stable interface between scaffolds and articular cartilage. Further efforts are required to ensure long-term interface stability.

Collaboration


Dive into the Magnus Höök's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara E. Murray

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Sabitha Prabhakaran

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge