Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Ø. Arntzen is active.

Publication


Featured researches published by Magnus Ø. Arntzen.


PLOS ONE | 2012

MiR-133b Targets Antiapoptotic Genes and Enhances Death Receptor-Induced Apoptosis

Juan Pablo Patron; Annika Fendler; Matthias Bild; Ulrike Jung; Henrik Müller; Magnus Ø. Arntzen; Chloe Piso; Carsten Stephan; Bernd Thiede; Hans-Joachim Mollenkopf; Klaus Jung; Stefan H. E. Kaufmann; J. Schreiber

Despite the importance of microRNAs (miRs) for regulation of the delicate balance between cell proliferation and death, evidence for their specific involvement during death receptor (DR)-mediated apoptosis is scarce. Transfection with miR-133b rendered resistant HeLa cells sensitive to tumor necrosis factor-alpha (TNFα)-induced cell death. Similarly, miR-133b caused exacerbated proapoptotic responses to TNF-related apoptosis-inducing ligand (TRAIL) or an activating antibody to Fas/CD95. Comprehensive analysis, encompassing global RNA or protein expression profiling performed by microarray experiments and pulsed stable isotope labeling with amino acids in cell culture (pSILAC), led to the discovery of the antiapoptotic protein Fas apoptosis inhibitory molecule (FAIM) as immediate miR-133b target. Moreover, miR-133b impaired the expression of the detoxifying protein glutathione-S-transferase pi (GSTP1). Expression of miR-133b in tumor specimens of prostate cancer patients was significantly downregulated in 75% of the cases, when compared with matched healthy tissue. Furthermore, introduction of synthetic miR-133b into an ex-vivo model of prostate cancer resulted in impaired proliferation and cellular metabolic activity. PC3 cells were also sensitized to apoptotic stimuli after transfection with miR-133b similar to HeLa cells. These data reveal the ability of a single miR to influence major apoptosis pathways, suggesting an essential role for this molecule during cellular transformation, tumorigenesis and tissue homeostasis.


PLOS ONE | 2010

The Preferred Substrates for Transglutaminase 2 in a Complex Wheat Gluten Digest Are Peptide Fragments Harboring Celiac Disease T-Cell Epitopes

Siri Dørum; Magnus Ø. Arntzen; Shuo-Wang Qiao; Anders Holm; Christian J. Koehler; Bernd Thiede; Ludvig M. Sollid; Burkhard Fleckenstein

BACKGROUND Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten. METHODS A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation. RESULTS We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized. CONCLUSION TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease.


Journal of Proteome Research | 2011

IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT.

Magnus Ø. Arntzen; Christian J. Koehler; Harald Barsnes; Frode S. Berven; Achim Treumann; Bernd Thiede

Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.


Journal of Bacteriology | 2012

Extracellular Identification of a Processed Type II ComR/ComS Pheromone of Streptococcus mutans

Rabia Khan; Håkon Valen Rukke; Antonio Pedro Ricomini Filho; Gunnar Fimland; Magnus Ø. Arntzen; Bernd Thiede; Fernanda C. Petersen

The competence-stimulating peptide (CSP) and the sigX-inducing peptide (XIP) are known to induce Streptococcus mutans competence for genetic transformation. For both pheromones, direct identification of the native peptides has not been accomplished. The fact that extracellular XIP activity was recently observed in a chemically defined medium devoid of peptides, as mentioned in an accompanying paper (K. Desai, L. Mashburn-Warren, M. J. Federle, and D. A. Morrison, J. Bacteriol. 194:3774-3780, 2012), provided ideal conditions for native XIP identification. To search for the XIP identity, culture supernatants were filtered to select for peptides of less than 3 kDa, followed by C(18) extraction. One peptide, not detected in the supernatant of a comS deletion mutant, was identified by tandem mass spectrometry (MS/MS) fragmentation as identical to the ComS C-terminal sequence GLDWWSL. ComS processing did not require Eep, a peptidase involved in processing or import of bacterial small hydrophobic peptides, since eep deletion had no inhibitory effect on XIP production or on synthetic XIP response. We investigated whether extracellular CSP was also produced. A reporter assay for CSP activity detection, as well as MS analysis of supernatants, revealed that CSP was not present at detectable levels. In addition, a mutant with deletion of the CSP-encoding gene comC produced endogenous XIP levels similar to those of a nondeletion mutant. The results indicate that XIP pheromone production is a natural phenomenon that may occur in the absence of natural CSP pheromone activity and that the heptapeptide GLDWWSL is an extracellular processed form of ComS, possibly the active XIP pheromone. This is the first report of direct identification of a ComR/ComS pheromone.


Analytical Chemistry | 2011

Isobaric Peptide Termini Labeling Utilizing Site-Specific N-Terminal Succinylation

Christian J. Koehler; Magnus Ø. Arntzen; Margarita Strozynski; Achim Treumann; Bernd Thiede

Recently, we introduced a novel approach for protein quantification based on isobaric peptide termini labeling (IPTL). In IPTL, both peptide termini are dervatized in two separate chemical reactions with complementary isotopically labeled reagents to generate isobaric peptide pairs. Here, we describe a novel procedure for the two chemical reactions to enable a cost-effective and rapid method. We established a selective N-terminal peptide modification reaction using succinic anhydride. Dimethylation was used as second chemical reaction to derivatize lysine residues. Both reactions can be performed within 15 min in one pot, and micropurification of the peptides between the two reactions was not necessary. For data analysis, we developed the force-find algorithm in IsobariQ which searches for corresponding peaks to build up peak pairs in tandem mass spectrometry (MS/MS) spectra where Mascot could not identify opposite sequences. Utilizing force-find, the number of quantified proteins was improved by more than 50% in comparison to the standard data analysis in IsobariQ. This was applied to compare the proteome of HeLa cells incubated with S-trityl-L-cysteine (STLC) to induce mitotic arrest and apoptosis. More than 50 proteins were found to be quantitatively changed, and most of them were previously reported in other proteome analyses of apoptotic cells. Furthermore, we showed that the two complementary isotopic labels coelute during liquid chromatography (LC) separation and that the linearity of relative IPTL quantification is not affected by a complex protein background. Combining the optimized reactions for IPTL with the open source data analysis software IsobariQ including force-find, we present a straightforward and rapid approach for quantitative proteomics.


Molecular & Cellular Proteomics | 2012

ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells

Magnus Ø. Arntzen; Bernd Thiede

Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.


Immunogenetics | 2015

Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires

Elin Bergseng; Siri Dørum; Magnus Ø. Arntzen; Morten Nielsen; Ståle Nygård; Søren Buus; Gustavo A. de Souza; Ludvig M. Sollid

Celiac disease is caused by intolerance to cereal gluten proteins, and HLA-DQ molecules are involved in the disease pathogenesis by presentation of gluten peptides to CD4+ T cells. The α- or β-chain sharing HLA molecules DQ2.5, DQ2.2, and DQ7.5 display different risks for the disease. It was recently demonstrated that T cells of DQ2.5 and DQ2.2 patients recognize distinct sets of gluten epitopes, suggesting that these two DQ2 variants select different peptides for display. To explore whether this is the case, we performed a comprehensive comparison of the endogenous self-peptides bound to HLA-DQ molecules of B-lymphoblastoid cell lines. Peptides were eluted from affinity-purified HLA molecules of nine cell lines and subjected to quadrupole orbitrap mass spectrometry and MaxQuant software analysis. Altogether, 12,712 endogenous peptides were identified at very different relative abundances. Hierarchical clustering of normalized quantitative data demonstrated significant differences in repertoires of peptides between the three DQ variant molecules. The neural network-based method, NNAlign, was used to identify peptide-binding motifs. The binding motifs of DQ2.5 and DQ7.5 concurred with previously established binding motifs. The binding motif of DQ2.2 was strikingly different from that of DQ2.5 with position P3 being a major anchor having a preference for threonine and serine. This is notable as three recently identified epitopes of gluten recognized by T cells of DQ2.2 celiac patients harbor serine at position P3. This study demonstrates that relative quantitative comparison of endogenous peptides sampled from our protein metabolism by HLA molecules provides clues to understand HLA association with disease.


Analytical Chemistry | 2013

An approach for triplex-isobaric peptide termini labeling (triplex-IPTL).

Christian J. Koehler; Magnus Ø. Arntzen; Gustavo A. de Souza; Bernd Thiede

Isobaric peptide termini labeling (IPTL) is based on labeling of both peptide termini with complementary isotopic labels resulting in isobaric peptides. MS/MS analysis after IPTL derivatization produces peptide-specific fragment ions which are distributed throughout the MS/MS spectrum. Thus, several quantification points can be obtained per peptide. In this report, we present triplex-IPTL, a chemical labeling strategy for IPTL allowing the simultaneous quantification of three states within one MS run. For this purpose, dimethylation of the N-terminal amino group followed by dimethylation of lysines was used with different stable isotopes of formaldehyde and cyanoborohydride. Upon LC-MS/MS analysis, the combined samples revealed three corresponding isotopic fragment ion series reflecting quantitatively the peptide ratios. To support this multiplexing labeling strategy, we have further developed the data analysis tool IsobariQ and included multidimensional VSN normalization, statistical inference, and graphical visualization of triplex-IPTL data and clustering of protein profiling patterns. The power of the triplex-IPTL approach in combination with IsobariQ was demonstrated through temporal profiling of HeLa cells incubated with the kinesin Eg5 inhibitor S-Trityl-l-cysteine (STLC). As a result, clusters of quantified proteins were found by their ratio profiles which corresponded well to their gene ontology association in mitotic arrest and cell death, respectively.


Methods of Molecular Biology | 2011

Quantitative Proteome Analysis Using Isobaric Peptide Termini Labeling (IPTL)

Magnus Ø. Arntzen; Christian J. Koehler; Achim Treumann; Bernd Thiede

The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.


Journal of Proteomics | 2013

Quantitative profiling of tyrosine phosphorylation revealed changes in the activity of the T cell receptor signaling pathway upon cisplatin-induced apoptosis

Gro Leite Størvold; Margarita Strozynski; Magnus Ø. Arntzen; Christian J. Koehler; Maria Elisabeth Kalland; Kjetil Taskén; Bernd Thiede

UNLABELLED In order to better understand the cellular responses to the chemotherapeutic drug cisplatin and the mechanisms leading to apoptosis and potential side effects, we performed a SILAC-based quantitative phosphotyrosine analysis of Jurkat T cells exposed to cisplatin. Signaling molecules in the T cell receptor (TCR) pathway were enriched among proteins displaying reduced phosphorylation levels. The results were verified by immunoblotting and/or phospho-flow cytometry for a selected set of proteins, including the tyrosine kinases Lck and Zap70, and downstream targets Itk, Plcγ1 and Erk. In contrast to the effects on the T cell signaling pathways, the dually phosphorylated form of p38α MAPK was increased in treated cells, and activation of this signaling pathway was verified by immunoblot analysis of phosphorylation levels of p38α MAPK and the downstream targets Atf2 and MAPKAPK2. Activation of the p38α MAPK signaling pathway has been suggested to be one of the main mechanisms by which cisplatin induces apoptosis. Our results indicate that cisplatin may reduce the activity of proteins involved in the TCR signaling pathway, which has an important role in regulating proliferation of T cells, and may contribute to explain previous observations where cisplatin has been reported to inhibit proliferation of T cells. BIOLOGICAL SIGNIFICANCE In this study, a quantitative phosphotyrosine analysis was performed to identify changes of the phosphoproteome during exposure of Jurkat T cells by cisplatin. The results of the phosphoproteome analysis were complemented with immunoblotting and temporal phospho-flow analysis. An initial activation of the p38α MAPK signaling pathway was detected at early time points of cisplatin treatment, a response previously suggested to be part of the mechanism by which cisplatin induces apoptosis. Furthermore, reduced phosphorylation levels of proteins involved in signaling downstream of the TCR during apoptosis were found by the phosphotyrosine proteome analysis. Our study can support to elucidate the mechanism behind the previously observed immunosuppressive effect of cisplatin.

Collaboration


Dive into the Magnus Ø. Arntzen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siri Dørum

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo-Wang Qiao

Oslo University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge