Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Skoglundh is active.

Publication


Featured researches published by Magnus Skoglundh.


Topics in Catalysis | 2001

Model studies of NOx storage and sulphur deactivation of NOx storage catalysts

Erik Fridell; Hans Persson; Louise Olsson; Björn Westerberg; Annika Amberntsson; Magnus Skoglundh

The influence of transient changes in the gas composition on the low-temperature activity of a commercial three-way catalyst and a Pt/Al2O3 model catalyst has been studied. By introducing well-controlled periodic O2 pulses to simple gas mixtures of CO or C3H6 (in N2), a substantial improvement of the low temperature oxidation activity was observed for both catalysts. The reason for low activity at low temperatures is normally attributed to self-poisoning by CO or hydrocarbons. The improved catalytic performance observed here is suggested to origin from the transients causing a surface reactant composition that is favourable for the reaction rate.The storage of NOx under lean conditions in model NOx storage catalysts as well as the deactivation by sulphur have been studied. We find that NO2 plays an important role in the storage mechanism as an oxidising agent. Two different mechanisms for this are discussed: the formation of surface peroxides and the oxidation of nitrites to nitrates, FTIR studies show that NOx is stored as surface nitrates, The sulphur deactivation is found to be more severe when SO2 is added during the rich phase than when SO2 is added during the lean period. FTIR shows the formation of bulk sulphates both under lean and rich conditions.The mechanisms for storing of NOx in platinum-barium-alumina catalysts during lean-rich transients are investigated. Oxidation of NO to NO2 is found to be an important step. NO2 is found to be important for oxidation of the catalyst or of nitrites to form nitrates. NOx is then stored in the form of surface nitrates. FTIR studies show no formation of bulk nitrates in these experiments.


Journal of the American Chemical Society | 2010

Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM

Søren Bredmose Simonsen; Ib Chorkendorff; Søren Dahl; Magnus Skoglundh; Jens Sehested; Stig Helveg

This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al(2)O(3) support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10 mbar air at 650 degrees C. Time-resolved image series unequivocally reveal that the sintering of Pt nanoparticles was mediated by an Ostwald ripening process. A statistical analysis of an ensemble of Pt nanoparticles shows that the particle size distributions change shape from an initial Gaussian distribution via a log-normal distribution to a Lifshitz-Slyozov-Wagner (LSW) distribution. Furthermore, the time-dependency of the ensemble-averaged particle size and particle density is determined. A mean field kinetic description captures the main trends in the observed behavior. However, at the individual nanoparticle level, deviations from the model are observed suggesting in part that the local environment influences the atom exchange process.


Catalysis Letters | 2000

The mechanism for NOx storage

Erik Fridell; Hans Persson; Björn Westerberg; Louise Olsson; Magnus Skoglundh

The mechanisms for storing of NOx in platinum–barium–alumina catalysts during lean–rich transients are investigated. Oxidation of NO to NO2 is found to be an important step. NO2 is found to be important for oxidation of the catalyst or of nitrites to form nitrates. NOx is then stored in the form of surface nitrates. FTIR studies show no formation of bulk nitrates in these experiments.


Catalysis Today | 2002

Mean Field Modelling of NOx Storage on Pt/BaO/Al2O3

Louise Olsson; Erik Fridell; Magnus Skoglundh; Bengt Andersson

A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NO, storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NO, storage model on BaO/Al2O3. This model was not sufficient to describe the NO, storage experiments for the Pt/BaO/Al2O3, because the NO, desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.


Applied Catalysis B-environmental | 2002

A comparison between Pt and Pd in NOx storage catalysts

Sophie Salasc; Magnus Skoglundh; Erik Fridell

The importance of Pt and Pd in noble metal-barium oxide type NOx storage catalysts was investigated. Model Pt/BaO/Al2O3 and Pd/BaO/Al2O3 catalysts were prepared and evaluated with respect to NOx storage capacity, activity towards NO reduction under lean conditions and NO oxidation capacity using synthetic lean burn exhausts containing NO, O2, C3H6 and N2. The study was carried out by performing static and transient flow reactor experiments and temperature-programmed desorption studies. At 300 degrees C, the Pd/BaO/Al2O3 sample shows a higher NOx storage capacity than Pt/BaO/Al2O3, i.e. more NOx is stored during the lean periods and almost all NOx is released and reduced during the subsequent rich periods. At this temperature(300 degrees C), the NO reduction is not complete during the rich phase for the Pt-based catalyst suggesting poisoning of Pt-sites by adsorbed species. At 400 degrees C, Pt/BaO/Al2O3 stores slightly more NOx than its Pd-based counterpart. XPS measurements on pre-treated catalysts, show some changes in oxidation state for Pd between the rich and lean phases. The oxidation of NO is much more limited on Pd based samples compared to Pt containing catalysts. The importance of NO2 as an intermediate in the storage of NOx as nitrate under lean conditions is confirmed in this study.


Applied Catalysis B-environmental | 1999

Sulphur dioxide interaction with NOx storage catalysts

Per Engström; Annika Amberntsson; Magnus Skoglundh; Erik Fridell; Gudmund Smedler

The effect of SO2 on the NOx storage capacity and oxidation and reduction activities of a model Pt/Rh/BaO/Al2O3 NOx storage catalyst was investigated. Addition of 2.5, 7.5 or 25 vol. ppm SO2 to a synthetic lean exhaust gas caused deactivation of the NOx storage function, the oxidation activity and the reduction activity of the catalyst. The degree of deactivation of the NOx storage capacity was found to be proportional to the total SO2 dose that the catalyst had been exposed to. SO2 was found to be accumulated in the catalyst as sulphate.


Applied Catalysis B-environmental | 1997

Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -Influence of pretreatment and gas composition

Anders Törncrona; Magnus Skoglundh; Peter Thormählen; Erik Fridell; Edward Jobson

The influence of pretreatment, gas composition and metal (Ce or Co) oxide promotion on the low-temperature CO and C3H6 oxidation activity over alumina-supported Pt and Pd has been studied. The monolith catalysts have either been preoxidised in O2/N2 Or prereduced in H2/N2 prior to evaluation with respect to light-off performance, using either net oxidising or net reducing CO/C3H6/O2/N2 gas mixtures. Compared with unpromoted Pt, promotion with preoxidised ceria or cobalt oxide enhances the low-temperature activity significantly and lowers the light-off temperatures by about 60-70 degrees C for both CO and C3H6. Prereduction of a cobalt-oxide catalyst (without precious metals) gives a dramatically improved performance compared with a preoxidised catalyst in terms of light-off and overall conversion. Prereduction of metal oxide promoted Pt and Pd can shift the light-off temperatures for CO and C3H6 by up to 100 degrees C toward lower temperatures compared with preoxidised samples. When using gas mixtures containing both CO and C3H6, the conversion of CO always starts at lower temperatures than the conversion of C3H6 The catalysts have been characterised by temperature-programmed desorption (TPD) of carbon monoxide, X-ray photoelectron spectroscopy (XPS), and specific surface area measurements (BET). The reduced cobalt containing samples adsorb large amounts of CO. The high activity over the catalysts containing prereduced cobalt oxide is suggested to be due to the presence of reduced cobalt-oxide sites on the surface of those samples.


Applied Catalysis B-environmental | 1996

Cobalt-promoted palladium as a three-way catalyst

Magnus Skoglundh; Hanna Johansson; Lars Löwendahl; Kjell Jansson; Leif Dahl; Bernhard Hirschauer

Fifteen catalysts were prepared by intermittently impregnating alumina washcoats with water solutions containing La3+, Co2+ and PdCl42- ions/complex and calcining them at 550-820 degrees C. The catalysts were evaluated with respect to light-off performance, at stationary and transient feed gas stoichiometry, respectively, and redox characteristics, using NO/CO/C3H6/O-2/N-2 gas mixtures to simulate car exhaust. Alumina supported Pd exhibited three-way activity, i.e., simultaneous oxidation of CO and C3H6 and reduction of NO in a narrow interval around stoichiometric composition of the feed gas. Compared to Pd alone, addition of La or Co caused a widening of the interval under net reducing conditions. Addition of Co to Pd caused a significant increase in the activities for oxidation of CO and C3H6 under stoichiometric conditions. The conversions of CO and C3H6 started at about 100 degrees lower temperatures over Co-promoted Pd compared to unpromoted Pd. A marked increase in the activity for the reduction of NO at transient conditions was observed over Co-promoted Pd compared to unpromoted Pd. The catalysts were characterized by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy combined with energy-dispersive spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), and specific surface area measurements. Only Co2+ could be detected by XPS in the surface layers of the Co-containing sample. A significant part of the cobalt is present in forms which can be oxidized and reduced under synthetic car exhaust conditions. These oxidizable/reducible cobalt sites are predominantly active for oxidation of CO and C3H6, hence promoting the reduction of NO over Pd by initiating these exothermic reactions in the catalyst.


Journal of Catalysis | 2003

Selective catalytic reduction of NOx with NH3 over zeolite H–ZSM-5: influence of transient ammonia supply

Mikaela Wallin; Carl-Johan Karlsson; Magnus Skoglundh; Anders Palmqvist

The effect of ammonia supply on the selective catalytic reduction of NOX over zeolite H-ZSM-5 was investigated using step response experiments between 200 and 500 degrees C. For inlet NO:NO2 ratios > 1, the activity for NOX reduction transiently increased when NH3 was removed from the feed. For NO:NO2 ratios less than or equal to 1, the NOX reduction however decreased. By pulsing NH3 to the feed, the activity for NO reduction was enhanced up to five times compared to continuous supply of ammonia. For NO:NO2 ratios exceeding one, also the selectivity towards N2O formation was lower with transient ammonia supply. Temperature programmed reaction experiments with preadsorbed NH3 showed highest initial NOX reduction activity when ammonia had been adsorbed at 300 or 250 degrees C compared to 200 degrees C. A minimum in NO reduction was observed at 130 degrees C independent of the ammonia adsorption temperature. For NO:NO2 ratios > 1, the results strongly indicate that NO oxidation is the rate determining step in the ammonia selective catalytic reduction (NH3-SCR) reaction over H-ZSM-5.


Journal of Catalysis | 2003

Sulfur deactivation of NOx storage catalysts: influence of exposure conditions and noble metal

Annika Amberntsson; Magnus Skoglundh; Sten Ljungström; Erik Fridell

In the present study, barium-based NOx, storage catalysts containing platinum, rhodium, or both noble metals were investigated. The influence of SO2 exposure conditions on the performance of NOx storage catalysts was studied using flow reactor measurements, FTIR, and XPS where the samples were exposed to lean and/or rich SO2-containing gas mixtures, simulating the conditions in a mixed lean application. The main results show that all samples are sensitive to sulfur and that deactivation is faster when SO2 is present in the feed under rich conditions than under lean or continuous SO2 exposure. It was also found that SO2 affects the performance of noble metals strongly and that noble metal deactivation most likely occurs during the rich period of a NOx storage cycle. Additionally, the influence of the noble metals present in the catalysts was investigated with respect to sulfur sensitivity and it was found that a combination of platinum and rhodium seems to be preferable for retaining high performance (high NO oxidation and reduction activity) of the catalyst under SO2 exposure and subsequent regeneration.

Collaboration


Dive into the Magnus Skoglundh's collaboration.

Top Co-Authors

Avatar

Per-Anders Carlsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Fridell

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hanna Härelind

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Louise Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anders Palmqvist

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hanna Härelind Ingelsten

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Henrik Grönbeck

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Soran Shwan

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Thormählen

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge