Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maha R. Farhat is active.

Publication


Featured researches published by Maha R. Farhat.


Critical Care | 2011

A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis

Constantine J. Karvellas; Maha R. Farhat; Imran Sajjad; Simon S Mogensen; Alexander A. Leung; Ron Wald; Sean M. Bagshaw

IntroductionOur aim was to investigate the impact of early versus late initiation of renal replacement therapy (RRT) on clinical outcomes in critically ill patients with acute kidney injury (AKI).MethodsSystematic review and meta-analysis were used in this study. PUBMED, EMBASE, SCOPUS, Web of Science and Cochrane Central Registry of Controlled Clinical Trials, and other sources were searched in July 2010. Eligible studies selected were cohort and randomised trials that assessed timing of initiation of RRT in critically ill adults with AKI.ResultsWe identified 15 unique studies (2 randomised, 4 prospective cohort, 9 retrospective cohort) out of 1,494 citations. The overall methodological quality was low. Early, compared with late therapy, was associated with a significant improvement in 28-day mortality (odds ratio (OR) 0.45; 95% confidence interval (CI), 0.28 to 0.72). There was significant heterogeneity among the 15 pooled studies (I2 = 78%). In subgroup analyses, stratifying by patient population (surgical, n = 8 vs. mixed, n = 7) or study design (prospective, n = 10 vs. retrospective, n = 5), there was no impact on the overall summary estimate for mortality. Meta-regression controlling for illness severity (Acute Physiology And Chronic Health Evaluation II (APACHE II)), baseline creatinine and urea did not impact the overall summary estimate for mortality. Of studies reporting secondary outcomes, five studies (out of seven) reported greater renal recovery, seven (out of eight) studies showed decreased duration of RRT and five (out of six) studies showed decreased ICU length of stay in the early, compared with late, RRT group. Early RRT did not; however, significantly affect the odds of dialysis dependence beyond hospitalization (OR 0.62 0.34 to 1.13, I2 = 69.6%).ConclusionsEarlier institution of RRT in critically ill patients with AKI may have a beneficial impact on survival. However, this conclusion is based on heterogeneous studies of variable quality and only two randomised trials. In the absence of new evidence from suitably-designed randomised trials, a definitive treatment recommendation cannot be made.


PLOS Computational Biology | 2009

Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

Caroline Colijn; Aaron Brandes; Jeremy Zucker; Desmond S. Lun; Brian Weiner; Maha R. Farhat; Tan-Yun Cheng; D. Branch Moody; Megan Murray; James E. Galagan

Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.


Nature Genetics | 2013

Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis.

Maha R. Farhat; B. Jesse Shapiro; Karen J. Kieser; Razvan Sultana; Karen R. Jacobson; Thomas C. Victor; Robin M. Warren; Elizabeth M. Streicher; Alistair Calver; Alexander Sloutsky; Devinder Kaur; Jamie E. Posey; Bonnie B. Plikaytis; Marco R. Oggioni; Jennifer L. Gardy; James C. Johnston; Mabel Rodrigues; Patrick Tang; Midori Kato-Maeda; Mark L. Borowsky; Bhavana Muddukrishna; Barry N. Kreiswirth; Natalia Kurepina; James E. Galagan; Sebastien Gagneux; Bruce Birren; Eric J. Rubin; Eric S. Lander; Pardis C. Sabeti; Megan Murray

M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly sequenced and 7 previously sequenced M. tuberculosis whole genomes, we identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains. By searching for convergent evolution—the independent fixation of mutations in the same nucleotide position or gene—we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.


Journal of Antimicrobial Chemotherapy | 2014

Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis

Hanna Nebenzahl-Guimaraes; Karen R. Jacobson; Maha R. Farhat; Megan Murray

BACKGROUND Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutations contribution to the drug resistance phenotype. METHODS We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. RESULTS We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. CONCLUSIONS This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance.


American Journal of Respiratory and Critical Care Medicine | 2016

Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value

Maha R. Farhat; Razvan Sultana; Oleg Iartchouk; Sam Bozeman; James E. Galagan; Peter Sisk; Christian Stolte; Hanna Nebenzahl-Guimaraes; Karen R. Jacobson; Alexander Sloutsky; Devinder Kaur; James E. Posey; Barry N. Kreiswirth; Natalia Kurepina; Leen Rigouts; Elizabeth M. Streicher; T. C. Victor; Robin M. Warren; Dick van Soolingen; Megan Murray

RATIONALE The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. OBJECTIVES To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. METHODS We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. MEASUREMENTS AND MAIN RESULTS The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. CONCLUSIONS These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.


Journal of Clinical Microbiology | 2016

Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis

Maha R. Farhat; Karen R. Jacobson; Molly F. Franke; Devinder Kaur; Alexander Sloutsky; Carole D. Mitnick; Megan Murray

ABSTRACT Molecular diagnostics that rapidly and accurately predict resistance to fluoroquinolone drugs and especially later-generation agents promise to improve treatment outcomes for patients with multidrug-resistant tuberculosis and prevent the spread of disease. Mutations in the gyr genes are known to confer most fluoroquinolone resistance, but knowledge about the effects of gyr mutations on susceptibility to early- versus later-generation fluoroquinolones and about the role of mutation-mutation interactions is limited. Here, we sequenced the full gyrA and gyrB open reading frames in 240 multidrug-resistant and extensively drug-resistant tuberculosis strains and quantified their ofloxacin and moxifloxacin MIC by testing growth at six concentrations for each drug. We constructed a multivariate regression model to assess both the individual mutation effects and interactions on the drug MICs. We found that gyrB mutations contribute to fluoroquinolone resistance both individually and through interactions with gyrA mutations. These effects were statistically significant. In these clinical isolates, several gyrA and gyrB mutations conferred different levels of resistance to ofloxacin and moxifloxacin. Consideration of gyr mutation combinations during the interpretation of molecular test results may improve the accuracy of predicting the fluoroquinolone resistance phenotype. Further, the differential effects of gyr mutations on the activity of early- and later-generation fluoroquinolones requires further investigation and could inform the selection of a fluoroquinolone for treatment.


International Journal of Tuberculosis and Lung Disease | 2015

Concordance of Mycobacterium tuberculosis fluoroquinolone resistance testing: implications for treatment.

Maha R. Farhat; Carole D. Mitnick; Molly F. Franke; Devinder Kaur; Alexander Sloutsky; Megan Murray; Karen R. Jacobson

Fluoroquinolone (FQ) drug susceptibility testing (DST) is an important step in the design of effective treatment regimens for multidrug-resistant tuberculosis. Here we compare ciprofloxacin, ofloxacin and moxifloxacin (MFX) resistance results from 226 multidrug-resistant samples. The low level of concordance observed suggests that DST should be performed for the specific FQ planned for clinical use. The results also support the new World Health Organization recommendation for testing MFX at a critical concentration of 2.0 μg/ml.


International Journal of Tuberculosis and Lung Disease | 2016

Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination.

Emmanuel André; C Isaacs; D Affolabi; R Alagna; D Brockmann; B. C. de Jong; E Cambau; Gavin J. Churchyard; Ted Cohen; Michel Delmée; Jean-Charles Delvenne; Maha R. Farhat; A Habib; Petter Holme; Salmaan Keshavjee; Aamir J. Khan; P Lightfoot; David Moore; Y Moreno; Y Mundade; Madhukar Pai; S Patel; A U Nyaruhirira; Luis E. C. Rocha; J Takle; Arnaud Trébucq; J Creswell; C Boehme

In regard to tuberculosis (TB) and other major global epidemics, the use of new diagnostic tests is increasing dramatically, including in resource-limited countries. Although there has never been as much digital information generated, this data source has not been exploited to its full potential. In this opinion paper, we discuss lessons learned from the global scale-up of these laboratory devices and the pathway to tapping the potential of laboratory-generated information in the field of TB by using connectivity. Responding to the demand for connectivity, innovative third-party players have proposed solutions that have been widely adopted by field users of the Xpert(®) MTB/RIF assay. The experience associated with the utilisation of these systems, which facilitate the monitoring of wide laboratory networks, stressed the need for a more global and comprehensive approach to diagnostic connectivity. In addition to facilitating the reporting of test results, the mobility of digital information allows the sharing of information generated in programme settings. When they become easily accessible, these data can be used to improve patient care, disease surveillance and drug discovery. They should therefore be considered as a public health good. We list several examples of concrete initiatives that should allow data sources to be combined to improve the understanding of the epidemic, support the operational response and, finally, accelerate TB elimination. With the many opportunities that the pooling of data associated with the TB epidemic can provide, pooling of this information at an international level has become an absolute priority.


Genome Medicine | 2014

A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens

Maha R. Farhat; B. Jesse Shapiro; Samuel K. Sheppard; Caroline Colijn; Megan Murray

Whole genome sequencing is increasingly used to study phenotypic variation among infectious pathogens and to evaluate their relative transmissibility, virulence, and immunogenicity. To date, relatively little has been published on how and how many pathogen strains should be selected for studies associating phenotype and genotype. There are specific challenges when identifying genetic associations in bacteria which often comprise highly structured populations. Here we consider general methodological questions related to sampling and analysis focusing on clonal to moderately recombining pathogens. We propose that a matched sampling scheme constitutes an efficient study design, and provide a power calculator based on phylogenetic convergence. We demonstrate this approach by applying it to genomic datasets for two microbial pathogens: Mycobacterium tuberculosis and Campylobacter species.


American Journal of Respiratory and Critical Care Medicine | 2017

Transmissible Mycobacterium tuberculosis Strains Share Genetic Markers and Immune Phenotypes

Hanna Nebenzahl-Guimaraes; Arjan van Laarhoven; Maha R. Farhat; Valerie A.C.M. Koeken; Jornt J. Mandemakers; Aldert Zomer; Sacha A. F. T. van Hijum; Mihai G. Netea; Megan Murray; Reinout van Crevel; Dick van Soolingen

Rationale: Successful transmission of tuberculosis depends on the interplay of human behavior, host immune responses, and Mycobacterium tuberculosis virulence factors. Previous studies have been focused on identifying host risk factors associated with increased transmission, but the contribution of specific genetic variations in mycobacterial strains themselves are still unknown. Objectives: To identify mycobacterial genetic markers associated with increased transmissibility and to examine whether these markers lead to altered in vitro immune responses. Methods: Using a comprehensive tuberculosis registry (n = 10,389) and strain collection in the Netherlands, we identified a set of 100 M. tuberculosis strains either least or most likely to be transmitted after controlling for host factors. We subjected these strains to whole‐genome sequencing and evolutionary convergence analysis, and we repeated this analysis in an independent validation cohort. We then performed immunological experiments to measure in vitro cytokine production and neutrophil responses to a subset of the original strains with or without the identified mutations associated with increased transmissibility. Measurements and Main Results: We identified the loci espE, PE‐PGRS56, Rv0197, Rv2813‐2814c, and Rv2815‐2816c as targets of convergent evolution among transmissible strains. We validated four of these regions in an independent set of strains, and we demonstrated that mutations in these targets affected in vitro monocyte and T‐cell cytokine production, neutrophil reactive oxygen species release, and apoptosis. Conclusions: In this study, we identified genetic markers in convergent evolution of M. tuberculosis toward enhanced transmissibility in vivo that are associated with altered immune responses in vitro.

Collaboration


Dive into the Maha R. Farhat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devinder Kaur

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge