Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maha S. Zaki is active.

Publication


Featured researches published by Maha S. Zaki.


Science | 2014

Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders

Gaia Novarino; Ali G. Fenstermaker; Maha S. Zaki; Matan Hofree; Jennifer L. Silhavy; Andrew Heiberg; Mostafa Abdellateef; Basak Rosti; Eric Scott; Lobna Mansour; Amira Masri; Hülya Kayserili; Jumana Y. Al-Aama; Ghada M.H. Abdel-Salam; Ariana Karminejad; Majdi Kara; Bülent Kara; Bita Bozorgmehri; Tawfeg Ben-Omran; Faezeh Mojahedi; Iman Gamal El Din Mahmoud; Naima Bouslam; Ahmed Bouhouche; Ali Benomar; Sylvain Hanein; Laure Raymond; Sylvie Forlani; Massimo Mascaro; Laila Selim; Nabil Shehata

Neurodegenerative Genetics The underlying genetics of neurodegenerative disorders tend not to be well understood. Novarino et al. (p. 506; see the Perspective by Singleton) investigated the underlying genetics of hereditary spastic paraplegia (HSP), a human neurodegenerative disease, by sequencing the exomes of individuals with recessive neurological disorders. Loss-of-function gene mutations in both novel genes and genes previously implicated for this condition were identified, and several were functionally validated. Analysis of hereditary spastic paraplegia genes identifies mutants involved in human neurodegenerative disease. [Also see Perspective by Singleton] Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


robotics and applications | 2012

Exome Sequencing Can Improve Diagnosis and Alter Patient Management

Tracy Dixon-Salazar; Jennifer L. Silhavy; Nitin Udpa; Jana Schroth; Ashleigh E. Schaffer; Jesus Olvera; Vineet Bafna; Maha S. Zaki; Ghada M.H. Abdel-Salam; Lobna Mansour; Laila Selim; Sawsan Abdel-Hadi; Naima Marzouki; Tawfeg Ben-Omran; Nouriya A. Al-Saana; F. Müjgan Sönmez; Figen Celep; Matloob Azam; Kiley J. Hill; Adrienne Collazo; Ali G. Fenstermaker; Gaia Novarino; Naiara Akizu; Kiran Garimella; Carrie Sougnez; Carsten Russ; Stacey Gabriel; Joseph G. Gleeson

Exome sequencing of 118 patients with neurodevelopmental disorders shows that this technique is useful for identifying new pathogenic mutations and for correcting diagnosis in ~10% of cases. A Needle in a Haystack Exome sequencing enables evaluation of all protein-coding variants in an individual genome and promises to revolutionize the practice of clinical genetics as it moves from the lab into the clinic. Bringing this technology to the clinic affords the opportunity not just to identify new disease-causing mutations but also to clarify disease presentation and diagnosis. There are many challenges to implementing this technology, however, including which patients to select for analysis, how to rank and prioritize the genetic variants, and how to align the data with the clinical record. In new work, Dixon-Salazar et al. studied a cohort of 118 probands with genetic forms of neurodevelopmental disease, all derived from consanguineous unions, using exome sequencing. All patients were previously excluded for genes most likely to cause their disease. The authors analyzed the exome sequences with a standardized bioinformatic pipeline. They found mutations in known disease-causing genes that in about 10% of cases led to a change in the underlying diagnosis. In 19% of cases, they identified mutations in genes not previously linked to disease. In the remaining cases, the genetic causes remained elusive. Thus, exome sequencing may both improve diagnosis and lead to alterations in patient management in some patients with neurodevelopmental disorders. However, analysis of more than one individual will be required to increase the success rate of identifying the causative mutation in most cases. The translation of “next-generation” sequencing directly to the clinic is still being assessed but has the potential for genetic diseases to reduce costs, advance accuracy, and point to unsuspected yet treatable conditions. To study its capability in the clinic, we performed whole-exome sequencing in 118 probands with a diagnosis of a pediatric-onset neurodevelopmental disease in which most known causes had been excluded. Twenty-two genes not previously identified as disease-causing were identified in this study (19% of cohort), further establishing exome sequencing as a useful tool for gene discovery. New genes identified included EXOC8 in Joubert syndrome and GFM2 in a patient with microcephaly, simplified gyral pattern, and insulin-dependent diabetes. Exome sequencing uncovered 10 probands (8% of cohort) with mutations in genes known to cause a disease different from the initial diagnosis. Upon further medical evaluation, these mutations were found to account for each proband’s disease, leading to a change in diagnosis, some of which led to changes in patient management. Our data provide proof of principle that genomic strategies are useful in clarifying diagnosis in a proportion of patients with neurodevelopmental disorders.


American Journal of Human Genetics | 2012

Syndrome of Hepatic Cirrhosis, Dystonia, Polycythemia, and Hypermanganesemia Caused by Mutations in SLC30A10, a Manganese Transporter in Man

Karin Tuschl; Peter Clayton; Sidney M. Gospe; Shamshad Gulab; Shahnaz Ibrahim; Pratibha Singhi; Roosy Aulakh; Reinaldo Teixeira Ribeiro; Orlando Graziani Povoas Barsottini; Maha S. Zaki; Maria Luz Del Rosario; Sarah Dyack; Victoria Price; Andrea Rideout; Kevin Gordon; Ron A. Wevers; W.K. “Kling” Chong; Philippa B. Mills

Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs(∗)17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes.


Lancet Neurology | 2013

Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study

Gillian I. Rice; Gabriella M.A. Forte; Marcin Szynkiewicz; Diana Chase; Alec Aeby; Mohamed S. Abdel-Hamid; Sam Ackroyd; Rebecca L Allcock; Kathryn M. Bailey; Umberto Balottin; Christine Barnerias; Geneviève Bernard; C. Bodemer; Maria P. Botella; Cristina Cereda; Kate Chandler; Lyvia Dabydeen; Russell C. Dale; Corinne De Laet; Christian de Goede; Mireia del Toro; Laila Effat; Noemi Nunez Enamorado; Elisa Fazzi; Blanca Gener; Madli Haldre; Jean-Pierre Lin; John H. Livingston; Charles Marques Lourenço; Wilson Marques

BACKGROUND Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. METHODS In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. FINDINGS 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. INTERPRETATION AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. FUNDING European Unions Seventh Framework Programme; European Research Council.


American Journal of Human Genetics | 2012

Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

Christelle Tesson; Magdalena Nawara; Mustafa A. Salih; Rodrigue Rossignol; Maha S. Zaki; Mohammed Al Balwi; Rebecca Schüle; Cyril Mignot; Emilie Obre; Ahmed Bouhouche; Filippo M. Santorelli; Christelle M. Durand; Andrés Caballero Oteyza; Khalid H. El-Hachimi; Abdulmajeed Al Drees; Naima Bouslam; Foudil Lamari; Salah A. Elmalik; Mohammad M. Kabiraj; Mohammed Z. Seidahmed; Typhaine Esteves; Marion Gaussen; Marie Lorraine Monin; Gabor Gyapay; Doris Lechner; Michael Gonzalez; Christel Depienne; Fanny Mochel; Julie Lavie; Ludger Schöls

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.


Annals of Neurology | 2006

AHI1 gene mutations cause specific forms of Joubert syndrome–related disorders

Enza Maria Valente; Francesco Brancati; Jennifer L. Silhavy; Marco Castori; Sarah E. Marsh; Giuseppe Barrano; Enrico Bertini; Eugen Boltshauser; Maha S. Zaki; Alice Abdel-Aleem; Ghada M. H. Abdel-Salam; Emanuele Bellacchio; Roberta Battini; Robert P. Cruse; William B. Dobyns; Kalpathy S. Krishnamoorthy; Clotilde Lagier-Tourenne; Alex Magee; Ignacio Pascual-Castroviejo; Carmelo Salpietro; Dean Sarco; Bruno Dallapiccola; Joseph G. Gleeson

Joubert syndrome (JS) is a recessively inherited developmental brain disorder with several identified causative chromosomal loci. It is characterized by hypoplasia of the cerebellar vermis and a particular midbrain‐hindbrain “molar tooth” sign, a finding shared by a group of Joubert syndrome–related disorders (JSRDs), with wide phenotypic variability. The frequency of mutations in the first positionally cloned gene, AHI1, is unknown.


Nature Genetics | 2012

CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium

Ji Eun Lee; Jennifer L. Silhavy; Maha S. Zaki; Jana Schroth; Sarah E. Marsh; Jesus Olvera; Francesco Brancati; Miriam Iannicelli; Koji Ikegami; Andrew M. Schlossman; Barry Merriman; Tania Attié-Bitach; Clare V. Logan; Ian A. Glass; Andrew Cluckey; Carrie M. Louie; Jeong Ho Lee; Hilary R. Raynes; Isabelle Rapin; Ignacio P. Castroviejo; Mitsutoshi Setou; Clara Barbot; Eugen Boltshauser; Stanley F. Nelson; Friedhelm Hildebrandt; Colin A. Johnson; Dan Doherty; Enza Maria Valente; Joseph G. Gleeson

Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.


Nature Medicine | 2011

Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome

Madeline A. Lancaster; Dipika Gopal; Joon Yong Kim; Sahar N. Saleem; Jennifer L. Silhavy; Carrie M. Louie; Bryan E. Thacker; Yuko Williams; Maha S. Zaki; Joseph G. Gleeson

The ciliopathy Joubert syndrome is marked by cerebellar vermis hypoplasia, a phenotype for which the pathogenic mechanism is unclear. To investigate Joubert syndrome pathogenesis, we have examined mice with mutated Ahi1, the first identified Joubert syndrome–associated gene. These mice show cerebellar hypoplasia with a vermis-midline fusion defect early in development. This defect is concomitant with expansion of the roof plate and is also evident in a mouse mutant for another Joubert syndrome–associated gene, Cep290. Furthermore, fetal magnetic resonance imaging (MRI) of human subjects with Joubert syndrome reveals a similar midline cleft, suggesting parallel pathogenic mechanisms. Previous evidence has suggested a role for Jouberin (Jbn), the protein encoded by Ahi1, in canonical Wnt signaling. Consistent with this, we found decreased Wnt reporter activity at the site of hemisphere fusion in the developing cerebellum of Ahi1-mutant mice. This decrease was accompanied by reduced proliferation at the site of fusion. Finally, treatment with lithium, a Wnt pathway agonist, partially rescued this phenotype. Our findings implicate a defect in Wnt signaling in the cerebellar midline phenotype seen in Joubert syndrome that can be overcome with Wnt stimulation.


Nature Genetics | 2015

Inactivating mutations in MFSD2A , required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome

Alicia Guemez-Gamboa; Long N. Nguyen; Hongbo Yang; Maha S. Zaki; Majdi Kara; Tawfeg Ben-Omran; Naiara Akizu; Rasim Ozgur Rosti; Basak Rosti; Eric Scott; Jana Schroth; Brett Copeland; Keith K. Vaux; Amaury Cazenave-Gassiot; Debra Q.Y. Quek; Bernice H. Wong; Bryan C. Tan; Markus R. Wenk; Murat Gunel; Stacey Gabriel; Neil C. Chi; David L. Silver; Joseph G. Gleeson

Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain–containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.


American Journal of Human Genetics | 2013

Mutations in EOGT Confirm the Genetic Heterogeneity of Autosomal-Recessive Adams-Oliver Syndrome

Ranad Shaheen; Mona Aglan; Kim M. Keppler-Noreuil; Eissa Faqeih; Shinu Ansari; Kim Horton; Adel M. Ashour; Maha S. Zaki; Fatema Alzahrani; Anna M. Cueto-González; Ghada M.H. Abdel-Salam; Samia A. Temtamy; Fowzan S. Alkuraya

Adams-Oliver syndrome (AOS) is a rare, autosomal-dominant or -recessive disorder characterized primarily by aplasia cutis congenita and terminal transverse limb defects. Recently, we demonstrated that homozygous mutations in DOCK6 cause an autosomal-recessive form of AOS. In this study, we sought to determine the contribution of DOCK6 mutations to the etiology of AOS in several consanguineous families. In two of the five families studied, we identified two homozygous truncating mutations (a splice-site mutation and a frameshift duplication). DOCK6 sequencing revealed no mutation in the remaining three families, consistent with their autozygosity mapping and linkage-analysis results, which revealed a single candidate locus in 3p14.1 on three different haplotype backgrounds in the three families. Indeed, exome sequencing in one family revealed one missense mutation in EOGT (C3orf64), and subsequent targeted sequencing of this gene revealed a homozygous missense mutation and a homozygous frameshift deletion mutation in the other two families. EOGT encodes EGF-domain-specific O-linked N-acetylglucosamine (O-GlcNAc) transferase, which is involved in the O-GlcNAcylation (attachment of O-GlcNAc to serine and threonine residues) of a subset of extracellular EGF-domain-containing proteins. It has a documented role in epithelial-cell-matrix interactions in Drosophila, in which deficiency of its ortholog causes wing blistering. Our findings highlight a developmental role of O-GlcNAcylation in humans and expand the genetic heterogeneity of autosomal-recessive AOS.

Collaboration


Dive into the Maha S. Zaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Scott

California State University

View shared research outputs
Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Damir Musaev

University of California

View shared research outputs
Top Co-Authors

Avatar

Jana Schroth

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naiara Akizu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge