Mahadeo Kumar
Indian Institute of Toxicology Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahadeo Kumar.
Human & Experimental Toxicology | 2016
Anurag Kumar Srivastav; Mahadeo Kumar; Nasreen Ghazi Ansari; Abhishek Kumar Jain; Jai Shankar; Nidhi Arjaria; Pankaj Jagdale; Dhirendra Singh
The purpose of this study was to characterize the zinc oxide nanoparticles (ZnO-NPs) and their bulk counterpart in suspensions and to access the impact of their acute oral toxicity at doses of 300 and 2000 mg/kg in healthy female Wistar rats. The hematological, biochemical, and urine parameters were accessed at 24 and 48 h and 14 days posttreatment. The histopathological evaluations of tissues were also performed. The distribution of zinc content in liver, kidney, spleen, plasma, and excretory materials (feces and urine) at 24 and 48 h and 14 days posttreatment were accessed after a single exposure at dose of 2000 mg/kg body weight. The elevated level of alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were observed in ZnO-NPs at a dose of 2000 mg/kg at all time points. There was a decrease in iron levels in all the treated groups at 24 h posttreatment as compared to control groups but returned to their normal level at 14 days posttreatment. The hematological parameters red blood cells, hemoglobin, hematocrit, platelets, and haptoglobin were reduced at 48 h posttreatment at a dose of 2000 mg/kg ZnO-NPs and showed hemolytic condition. All the treated groups were comparable to control group at the end of 14 days posttreatment. The zinc concentration in the kidney, liver, plasma, feces, and urine showed a significant increase in both groups as compared to control. This study explained that ZnO-NPs produced more toxicological effect as compared to their bulk particles as evidenced through alteration in some hemato-biochemical parameters and with few histopathological lesions in liver and kidney tissues.
The Scientific World Journal | 2013
Abhay Raj; Sharad Kumar; Sudheer Kumar Singh; Mahadeo Kumar
Providencia sp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications.
International Scholarly Research Notices | 2014
Abhay Raj; Sharad Kumar; Izharul Haq; Mahadeo Kumar
Common effluent treatment plant (CETP) is employed for treatment of tannery effluent. However, the performance of CETP for reducing the genotoxic substances from the raw effluent is not known. In this study, phytotoxic and genotoxic effects of tannery effluents were investigated in mung bean (Vigna radiata (L.) Wilczek). For this purpose, untreated and treated tannery effluents were collected from CETP Unnao (UP), India. Seeds of mung bean were grown in soil irrigated with various concentrations of tannery effluents (0, 25, 50, 75, and 100%) for 15 days. Inhibition of seed germination was 90% by 25% untreated effluent and 75% treated effluent, compared to the control. Plant growth was inhibited by 51% and 41% when irrigated with untreated and treated effluents at 25% concentration. RAPD technique was used to evaluate the genotoxic effect of tannery effluents (untreated and treated) irrigation on the mung bean. The RAPD profiles obtained showed that both untreated and treated were having genotoxic effects on mung bean plants. This was discernible with appearance/disappearance of bands in the treatments compared with control plants. A total of 87 RAPD bands were obtained using eight primers and 42 (48%) of these showed polymorphism. Irrigating plants with untreated effluent caused 12 new bands to appear and 18 to disappear. Treated effluent caused 8 new bands and the loss of 15 bands. The genetic distances shown on the dendrogram revealed that control plants and those irrigated with treated effluent were clustered in one group (joined at distance of 0.28), whereas those irrigated with untreated effluent were separated in another cluster at larger distance (joined at distance of 0.42). This indicates that treated effluent is less genotoxic than the untreated. Neis genetic similarity indices calculated between the treatments and the control plants showed that the control and the plants irrigated with treated tannery effluent had a similarity index of 0.75, the control and plants irrigated with untreated 0.65, and between the treatments 0.68. We conclude that both untreated and treated effluents contain genotoxic substances that caused DNA damage to mung beans. CETP Unnao removes some, but not all, genotoxic substances from tannery effluent. Consequently, use of both untreated and treated wastewater for irrigation poses health hazard to human and the environment.
Scientific Reports | 2017
Ruchi Gera; Vikas Singh; Sumonto Mitra; Anuj Kumar Sharma; Alok Singh; Arunava Dasgupta; Dhirendra Singh; Mahadeo Kumar; Pankaj Jagdale; Satyakam Patnaik; Debabrata Ghosh
Arsenic is globally infamous for inducing immunosuppression associated with prevalence of opportunistic infection in exposed population, although the mechanism remains elusive. In this study, we investigate the effect of arsenic exposure on thymocyte lineage commitment and the involvement of regulatory T cells (Treg) in arsenic-induced immunosuppression. Male Balb/c mice were exposed to 0.038, 0.38 and 3.8 ppm sodium arsenite for 7, 15 and 30 days through oral gavage. Arsenic exposure promoted CD4 lineage commitment in a dose dependent manner supported by the expression of ThPOK in thymus. Arsenic also increased splenic CD4+ T cells and promoted their differentiation into Treg cells. In parallel, arsenic exposure induced immunosuppression characterized by low cytokine secretion from splenocytes and increased susceptibility to Mycobacterium fortuitum (M. fortuitum) infection. Therefore, we linked arsenic-induced rise in Treg cells with suppressed Th1 and Th2 related cytokines, which has been reversed by inhibition of Treg cells in-vivo using wortmannin. Other parameters like body weight, kidney and liver function, histoanatomy of thymus and spleen as well as thymocyte and splenocytes viability were unaltered by arsenic exposure. Taken together our findings indicated that environmentally relevant dose of arsenic enhanced differentiation of Treg cells which in turn induce immunosuppression in experimental animals.
Brazilian Archives of Biology and Technology | 2018
Sharad Kumar; Mahadeo Kumar; Abhay Raj; Jyoti Prakash
The present investigation details an assessment of genetic relationship of E. coli isolates collected from two different environmental sources viz. sewage water and soiled bedding materials of laboratory rodents. Five sewage water samples were collected from the industrial area of Lucknow city and 5 samples of soiled bedding materials of laboratory animals were collected from Animal facility at CSIR-IITR, Lucknow. For this study Random amplified polymorphic DNA markers (RAPD) was chosen as the molecular fingerprinting method. In this study, 10 RAPD primers were used to evaluate the genetic similarity of E. coli. isolates. The RAPD-PCR fingerprints were analyzed and data were scored as 1, 0 matrix. The generated data were fed on Popgene software for calculating genetic diversity and creating dendrogram. The genetic similarity of 85% was recorded from soiled bedding materials and only 71% in sewage water samples in E.coli samples. The dendrogram based generation of clustering of E. coli isolates show two major clusters. Within major cluster sub-cluster were also observed which indicating diversity within isolates of E. coli. The RAPD-PCR based fingerprinting provided a rapid means of discriminating E. coli isolates and considered a relevant tool for molecular typing.
Toxicology and Industrial Health | 2017
Anurag Kumar Srivastav; Akhilesh Kumar; Jyoti Prakash; Dhirendra Singh; Pankaj Jagdale; Jai Shankar; Mahadeo Kumar
The expanded uses of zinc oxide nanoparticles (ZnO NPs) have grown rapidly in the field of nanotechnology. Thus, rising production of nanoparticles (NPs) increases the possible risks to the environment and occupationally exposed humans. Hence, it is indispensable to appraise the safety toxicity including genotoxicity for these NPs. In the present study, we have evaluated the genotoxic effect of ZnO NPs after oral administration to Swiss mice at dose levels of 300 and 2000 mg/kg body weight. These doses were administered for 2 days at 24 h apart. Chromosomal aberration (CA) and micronucleus tests were conducted following Organization for Economic Co-operation and Development guidelines. DNA damage was evaluated at 0, 24, 48, and 72 h posttreatment using a randomly amplified polymorphic DNA (RAPD) assay; additionally, semen analyses were also performed at 34.5 days post oral exposure. The reactive oxygen species (ROS), 8-oxo-2′-deoxyguanosine and CAs were increased (p < 0.05) at the highest dosage (2000 mg/kg) of ZnO NPs compared to controls. Aberrant sperm morphology with reduced sperm count and motility were also present (p < 0.05) in the high-dose group. Based on the RAPD assay, the genomic template stability within the high-dose group (<90%) was less than the controls (100%). The results suggested that ZnO NPs are mildly genotoxic in a dose-related manner and this toxicity were induced by generation of ROS.
Chemical Research in Toxicology | 2017
Sabiya Abbas; Shamshad Alam; Krishna P. Singh; Mahadeo Kumar; Shailendra K. Gupta; Kausar M. Ansari
Benzanthrone (BA), an oxidized polycyclic aromatic hydrocarbon (PAH), has been found to be a potential health threat to occupational workers involved in dye manufacturing factories. It has been observed that occupational workers become exposed to BA either during manufacturing, pulverization, or storage and developed various kinds of skin diseases like contact dermatitis, itching, erythema, roughness, and foremost, hyperpigmentation. It has been shown that some environmental organic pollutants (POPs) like dioxins, furans, and polychlorinated biphenyls (PCBs) may act as ligands for the aryl hydrocarbon receptor (AhR) and regulate hyperpigmentation. Here, we hypothesized that BA may also act as a ligand for AhR and possibly regulate the melanogenic pathway to induced hyperpigmentation. Our computation results indicate that BA has a high binding affinity toward AhR for the initiation of melanogenic signaling. Following the in silico predictions, we used primary mouse melanocytes (PMMs) and confirmed that exposure to BA (5, 10, and 25 μM) resulted in an increase in AhR expression, tyrosinase activity, and melanin synthesis. Moreover, to study the physiological relevance of these findings, C57BL/6 mice were topically exposed to BA, and enhanced pigmentation and melanin synthesis were observed. Furthermore, the study was extended to assess the mechanistic aspects involved in BA-induced hyperpigmentation in PMMs as well as in mouse skin. Our results suggest that BA exposure initiates AhR signaling and increases tyrosinase enzyme activity and melanin synthesis. Moreover, the genes that regulate the melanin synthesis, such as TRP-1, TRP-2 and the transcription factor MITF, were also found to be increased. Thus, altogether, we suggest that BA-AhR interactions are critical for BA-induced hyperpigmentation.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016
Anu Pal; Shamshad Alam; Sandeep Mittal; Nidhi Arjaria; Jai Shankar; Mahadeo Kumar; Dhirendra Singh; Alok K. Pandey; Kausar M. Ansari
Food and Chemical Toxicology | 2016
Sabiya Abbas; Shamshad Alam; Anu Pal; Mahadeo Kumar; Dhirendra Singh; Kausar M. Ansari
Toxicology Research | 2016
Anu Pal; Shamshad Alam; L.K.S. Chauhan; Prem Narain Saxena; Mahadeo Kumar; Ghazi N. Ansari; Dhirendra Singh; Kausar M. Ansari