Mahadevan Lakshminarasimhan
University of Bayreuth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahadevan Lakshminarasimhan.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Melanie Gertz; Frank Fischer; Giang Thi Tuyet Nguyen; Mahadevan Lakshminarasimhan; Mike Schutkowski; Michael Weyand; Clemens Steegborn
Significance Sirtuin enzymes regulate metabolism and stress responses through deacetylation of specific protein lysine residues. Sirtuins are considered attractive drug targets, but selective inhibitors are rare, and their mechanisms mostly unknown. We report the mechanism of Sirtuin inhibition by Ex-527, a potent Sirt1 inhibitor widely used in physiological studies. A set of Sirtuin/ligand crystal structures, together with activity and binding data, reveals that the compound inhibits by forming a trimeric Sirtuin complex with a NAD+-derived coproduct. Our results yield insights in the unique Sirtuin catalytic mechanism and how it is exploited by Ex-527, and they provide essential information for rational drug development. Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1–7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD+, alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD+ or of the coproduct 2’-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.
Nature Communications | 2013
David Rauh; Frank Fischer; Melanie Gertz; Mahadevan Lakshminarasimhan; Tim Bergbrede; Firouzeh Aladini; Christian Kambach; Christian F. W. Becker; Johannes Zerweck; Mike Schutkowski; Clemens Steegborn
Sirtuin enzymes regulate metabolism and aging processes through deacetylation of acetyl-lysines in target proteins. More than 6,800 mammalian acetylation sites are known, but few targets have been assigned to most sirtuin isoforms, hampering our understanding of sirtuin function. Here we describe a peptide microarray system displaying 6,802 human acetylation sites for the parallel characterisation of their modification by deacetylases. Deacetylation data for all seven human sirtuins obtained with this system reveal isoform-specific substrate preferences and deacetylation substrate candidates for all sirtuin isoforms, including Sirt4. We confirm malate dehydrogenase protein as a Sirt3 substrate and show that peroxiredoxin 1 and high-mobility group B1 protein are deacetylated by Sirt5 and Sirt1, respectively, at the identified sites, rendering them likely new in vivo substrates. Our microarray platform enables parallel studies on physiological acetylation sites and the deacetylation data presented provide an exciting resource for the identification of novel substrates for all human sirtuins.
PLOS ONE | 2012
Frank Fischer; Melanie Gertz; Benjamin Suenkel; Mahadevan Lakshminarasimhan; Mike Schutkowski; Clemens Steegborn
Sirtuins are protein deacylases regulating metabolism and aging processes, and the seven human isoforms are considered attractive therapeutic targets. Sirtuins transfer acyl groups from lysine sidechains to ADP-ribose, formed from the cosubstrate NAD+ by release of nicotinamide, which in turn is assumed to be a general Sirtuin inhibitor. Studies on Sirtuin regulation have been hampered, however, by shortcomings of available assays. Here, we describe a mass spectrometry–based, quantitative deacylation assay not requiring any substrate labeling. Using this assay, we show that the deacetylation activity of human Sirt5 features an unusual insensitivity to nicotinamide inhibition. In contrast, we find similar values for Sirt5 and Sirt3 for the intrinsic NAD+ affinity as well as the apparent NAD+ affinity in presence of peptide. Structure comparison and mutagenesis identify an Arg neighboring to the Sirt5 nicotinamide binding pocket as a mediator of nicotinamide resistance, and statistical sequence analyses along with testing further Sirtuins reveal a network of coevolved residues likely defining a nicotinamide-insensitive Sirtuin deacetylase family. The same Arg was recently reported to render Sirt5 a preferential desuccinylase, and we find that this Sirt5 activity is highly sensitive to nicotinamide inhibition. Analysis of Sirt5 structures and activity data suggest that an Arg/succinate interaction is the molecular basis of the differential nicotinamide sensitivities of the two Sirt5 activities. Our results thus indicate a Sirtuin subfamily with nicotinamide-insensitive deacetylase activity and suggest that the molecular features determining nicotinamide sensitivity overlap with those dominating deacylation specificity, possibly suggesting that other subfamily members might also prefer other acylations than acetylations.
Nature Communications | 2015
Shinya Watanabe; Dongyan Tan; Mahadevan Lakshminarasimhan; Michael P. Washburn; Eun-Jin Erica Hong; Thomas Walz; Craig L. Peterson
INO80-C and SWR-C are conserved members of a subfamily of ATP-dependent chromatin remodeling enzymes that function in transcription and genome-maintenance pathways. A crucial role for these enzymes is to control chromosomal distribution of the H2A.Z histone variant. Here we use electron microscopy (EM) and two-dimensional (2D) class averaging to demonstrate that these remodeling enzymes have similar overall architectures. Each enzyme is characterized by a dynamic ‘tail’ domain and a compact ‘head’ that contains Rvb1/Rvb2 subunits organized as hexameric rings. EM class averages and mass spectrometry support the existence of single heterohexameric rings in both SWR-C and INO80-C. EM studies define the position of the Arp8/Arp4/Act1 module within INO80-C, and we find that this module enhances nucleosome binding affinity but is largely dispensable for remodeling activities. In contrast, the Ies6/Arp5 module is essential for INO80-C remodeling, and furthermore this module controls conformational changes that may couple nucleosome binding to remodeling.
Experimental Gerontology | 2011
Mahadevan Lakshminarasimhan; Clemens Steegborn
Advances in research on mitochondria have elucidated their importance in cell survival and cell death regulation in addition to their function in energy production. Mitochondria are further implicated in various metabolic and aging-related diseases, which are now assumed to be caused by misregulation of physiological systems rather than pure accumulation of oxidative damage. Thus, the signaling mechanisms within mitochondria and between the organelle and its environment have gained interest as potential drug targets. Emerging mitochondrial signaling systems with potential for exploiting them for therapeutic intervention include, among others, the NAD(+)-dependent protein deacetylases of the Sirtuin family, the redox enzyme p66(Shc), and enzymes of the cyclic adenosine monophosphate (cAMP) signaling pathways. Here, we discuss functions of these signaling systems in mitochondria, their roles in aging processes and disease, and their potential to serve as therapeutic targets.
Bioscience Reports | 2013
Mahadevan Lakshminarasimhan; Ute Curth; Sébastien Moniot; Shyamal Mosalaganti; Stefan Raunser; Clemens Steegborn
Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N- and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist.
Journal of Biological Chemistry | 2010
Mahadevan Lakshminarasimhan; Peter Madzelan; Ruth Nan; Nicole M. Milkovic; Mark A. Wilson
Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 Å. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 Å C-α root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.
Molecular & Cellular Proteomics | 2014
Charles A. S. Banks; Zachary T. Lee; Gina Boanca; Mahadevan Lakshminarasimhan; Brad D. Groppe; Zhihui Wen; Gaye Hattem; Chris Seidel; Laurence Florens; Michael P. Washburn
The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.
Molecular & Cellular Proteomics | 2016
Mahadevan Lakshminarasimhan; Gina Boanca; Charles A. S. Banks; Gaye Hattem; Ana E. Gabriel; Brad D. Groppe; Christine J. Smoyer; Kate Malanowski; Allison Peak; Laurence Florens; Michael P. Washburn
The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.
Archive | 2014
Mahadevan Lakshminarasimhan; Michael P. Washburn
Recent advances in the field of chromatin remodeling have elucidated its role in various cellular processes beyond transcription. The intricate dynamics and interplay between several chromatin-remodeling complexes has been shown to be responsible for events ranging from cell differentiation, epigenetic regulation, and human diseases. One of the biggest challenges in understanding the function of these large protein complexes is dissecting their assembly, interactions with other proteins, and identifying the role of individual components. Technological advances in quantitative proteomics make it one of the most sought after technique in identifying and analyzing multiprotein complexes and posttranslational modifications. In particular, multidimensional protein identification technology and spectral counting-based quantitative proteomic analysis is a popular choice for analyzing chromatin remodeling complexes. The reason being they are straightforward approaches and are able to identify and quantify low abundant proteins in a label-free manner. This chapter highlights the recent findings of chromatin-remodeling complexes with respect to cellular processes and disease states and the role of quantitative proteomics has played in these findings.