Mahalingeshwara K. Bhat
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahalingeshwara K. Bhat.
Enzyme and Microbial Technology | 1999
Vladimír Puchart; Petros Katapodis; Peter Biely; Lubomír Kremnický; Paul Christakopoulos; Mária Vršanská; Dimitris Kekos; Basil J. Macris; Mahalingeshwara K. Bhat
A group of 17 strains of the thermophilic fungus Thermomyces lanuginosus was examined for the production of xylanases, β-mannanases, arabinanases, and pectinases. All strains were found to be xylanolytic, and several were proven to be outstanding producers of microbial xylanase on glucuronoxylan and corn cobs. The strains hyperproducing xylanase secreted low amounts of xylan-debranching enzymes and did not produce β-mannan and arabinan-degrading enzyme systems. Only the strains showing lower xylanase production exhibited a higher degree of xylan utilization and also the ability to produce a mannanolytic enzyme system. One of the mannanolytic strains was found to be capable of producing arabinan-degrading enzymes. This strain also showed the best production of pectinolytic enzymes during growth on citrus pectin or sugar beet pulp. Some of the strains have good potential for use as sources of important industrial enzymes of high thermal stability.
Carbohydrate Research | 1998
Neil A. Bennett; James Ryan; Peter Biely; Mária Vršanská; Lubomir Kremnicky; Basil J. Macris; Dimitris Kekos; Paul Christakopoulos; Petros Katapodis; Marc Claeyssens; Wim Nerinckx; Mahalingeshwara K. Bhat
An endoxylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) from the culture filtrates of T. lanuginosus ATCC 46882 was purified to homogeneity by DEAE-Sepharose and Bio-Gel P-30 column chromatographies. The purified endoxylanase had a specific activity of 888.8 mumol min-1 mg-1 protein and accounted for approximately 30% of the total protein secreted by this fungus. The molecular mass of native (non-denatured) and denatured endoxylanase were 26.3 and 25.7 kD as, respectively. Endoxylanase had a pI of 3.7 and was optimally active between pH 6.0-6.5 and at 75 degrees C. The enzyme showed > 50% of its original activity between pH 5.5-9.0 and at 85 degrees C. The pH and temperature stability studies revealed that this endoxylanase was almost completely stable between pH 5.0-9.0 and up to 60 degrees C for 5 h and at pH 10.0 up to 55 degrees C for 5 h. Thin-layer chromatography (TLC) analysis showed that endoxylanase released mainly xylose (Xyl) and xylobiose (Xyl2) from beechwood 4-O-methyl-D-glucuronoxylan, O-acetyl-4-O-methyl-D-glucuronoxylan and rhodymenan (a beta-(1-->3)-beta(1-->4)-xylan). Also, the enzyme released an acidic xylo-oligosaccharide from 4-O-methyl-D-glucuronoxylan, and an isomeric xylotetraose and an isomeric xylopentaose from rhodymenan. The enzyme hydrolysed [1-3H]-xylo-oligosaccharides in an endofashion, but the hydrolysis of [1-3H]-xylotriose appeared to proceed via transglycosylation. since the xylobiose was the predominant product. Endoxylanase was not active on pNPX and pNPC at 40 and 100 mM for up to 6 h, but showed some activity toward pNPX at 100 mM after 20-24 h. The results suggested that the endoxylanase from T. lanuginosus belongs to family 11.
Biochimica et Biophysica Acta | 2000
Vladimír Puchart; Mária Vršanská; Mahalingeshwara K. Bhat; Peter Biely
An extracellular alpha-galactosidase was purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of a mannanolytic strain of the thermophilic fungus Thermomyces lanuginosus. Molecular mass of the enzyme is 57 kDa. The pure enzyme which has a glycoprotein nature, afforded several forms on IEF, indicating its microheterogeneity. Isoelectric point of the major form was 5.2. Enzyme is the most active against aryl alpha-D-galactosides but efficiently hydrolyzed alpha-glycosidically linked non-reducing terminal galactopyranosyl residues occurring in natural substrates such as melibiose, raffinose, stachyose, and fragments of galactomannan. In addition, the enzyme is able to catalyze efficient degalactosylation of polymeric galactomannans leading to precipitation of the polymers. Stereochemical course of hydrolysis of two substrates, 4-nitrophenyl alpha-galactopyranoside and galactosyl(1)mannotriose, followed by (1)H NMR spectroscopy, pointed out the alpha-anomer of D-galactose was the primary product of hydrolysis from which the beta-anomer was formed by mutarotation. Hence the enzyme is a retaining glycosyl hydrolase. In accord with its retaining character the enzyme catalyzed transgalactosylation from 4-nitrophenyl alpha-galactopyranoside as a glycosyl donor. Amino acid sequence alignment of N-terminal and two internal sequences suggested that the enzyme is a member of family 27 of glycosyl hydrolases.
Archives of Biochemistry and Biophysics | 2002
Neil J. Parry; D.E. Beever; E. Owen; Wim Nerinckx; Marc Claeyssens; J. Van Beeumen; Mahalingeshwara K. Bhat
A major extracellular endoglucanase purified to homogeneity from Thermoascus aurantiacus had a M(r) of 34 kDa and a pI of 3.7 and was optimally active at 70-80 degrees C and pH 4.0-4.4. It was stable at pH 2.8-6.8 at 50 degrees C for 48 h and maintained its secondary structure and folded conformation up to 70 degrees C at pH 5.0 and 2.8, respectively. A 33-amino acid sequence at the N terminus showed considerable homology with 14 microbial endoglucanases having highly conserved 8 amino acids (positions 10-17) and Gly, Pro, Gly, and Pro at positions 8, 22, 23, and 32, respectively. The enzyme is rich in Asp (15%) and Glu (10%) with a carbohydrate content of 2.7%. Polyclonal antibodies of endoglucanase cross-reacted with their own antigen and with other purified cellulases from T. aurantiacus. The endoglucanase was specific for polymeric substrates with highest activity toward carboxymethyl cellulose followed by barley beta-glucan and lichenan. It preferentially cleaved the internal glycosidic bonds of Glc(n) and MeUmbGlc(n) and possessed an extended substrate-binding site with five subsites. The data indicate that the endoglucanase from T. aurantiacus is a member of glycoside hydrolase family 5.
Carbohydrate Research | 1996
Paul Christakopoulos; Dimitris Kekos; Basil J. Macris; Marc Claeyssens; Mahalingeshwara K. Bhat
A major xylanase from Fusarium oxysporum was purified to homogeneity by gel filtration, affinity, and ion-exchange chromatographies. It has a molecular mass of 60.2 kDa and pI of 6.6 and was optimally active at pH 7.4 and at 50 degrees C. The enzyme was stable over the pH range 5.8-8.2 at 40 degrees C for 24 h and lost 45% of its original activity at pH 9.0 under the identical conditions. The enzyme rapidly hydrolysed xylans from oat spelts (husks) and birchwood, but the activities on carboxymethylcellulose (CMC), filter paper, and Avicel were very low. Determination of kcat/Km revealed that the enzyme hydrolysed oat spelts and birchwood xylans, 15-30 times more efficiently than CMC. In a 24 h incubation, at pH 7.0 and 9.0, the enzyme hydrolysed oat spelts and birchwood xylans by 75 and 65%, respectively. However, at pH 7.0, the enzyme released almost equal amounts of xylose and xylobiose from both xylans, whereas at pH 9.0, the concentration of xylobiose was twice as muchi as that of xylose and xylotriose. Xylanase attacked preferentially the internal glycosidic bonds of xylo- and 4-methylumbelliferyl cello-oligosaccharides [MeUmb(Glc)n]. The enzyme catalysed transglycosylation reaction with xylotriose, xylotetraose, and xylopentaose as donors and 4-methylumbelliferyl beta-D-glucoside (MeUmbGlc) as an acceptor.
International Journal of Biological Macromolecules | 1994
Siva Bhat; Peter W. Goodenough; Mahalingeshwara K. Bhat; E. Owen
The cellulosome of Clostridium thermocellum, purified by affinity chromatography, was dissociated under mild conditions and separated by SDS-PAGE. Two major p-nitrophenylcellobiosidases (PNPCases I and II) corresponding to the S5 (103 kDa) and S8 (78 kDa) subunits and one major carboxymethylcellulase (CMCase) coinciding with the S11 (60.5 kDa) subunit were isolated and characterized using carboxymethylcellulose (CMC), H3PO4-swollen cellulose and cello-oligosaccharides. Both PNPCases showed little effect on the viscosity of CMC and released twice as much total sugar as reducing sugar from H3PO4-swollen cellulose. The CMCase released ten times more total sugar than reducing sugar from H3PO4-swollen cellulose and reduced the viscosity of CMC rapidly. None of these enzymes was active on cellotriose. Both PNPCases released cellobiose from cellotetraose, and cellobiose and cellotriose from cellopentaose. In contrast, CMCase was active only on cellopentaose and released mainly glucose. Use of MeUmb(Glc)n revealed that both PNPCases cleaved preferentially either the second or fourth linkage from the non-reducing end while the CMCase was specific for the internal glycosidic bonds. Thus, the PNPCases and CMCase behaved as typical exo- and endoglucanases, respectively. When tested individually, all three enzymes degraded Avicel only to a small extent. A 1.5-2.0-fold increase in sugar release was observed when CMCase was combined with either PNPCase I, II or both. Combining S1 with either PNPCase II or CMCase resulted in fourfold synergism in the hydrolysis of Avicel. Synergism was sevenfold when all three enzymes were combined with S1.
Biochemical and Biophysical Research Communications | 2002
F. Van Petegem; Isabel Vandenberghe; Mahalingeshwara K. Bhat; J. Van Beeumen
The crystal structure of the major endoglucanase from the thermophilic fungus Thermoascus aurantiacus was determined by single isomorphous replacement at 1.12A resolution. The full sequence supports the classification of the protein in a subgroup of glycoside hydrolase family 5 for which no structural data are available yet. The active site shows eight critical residues, strictly conserved within family 5. In addition, aromatic residues that line the substrate-binding cleft and that are possibly involved in substrate-binding are identified. A number of residues seem to be conserved among members of the subtype, including a disulphide bridge between Cys212 and Cys249.
Biochemical Journal | 2000
Patricia Ntarima; Wim Nerinckx; Klaus Klarskov; Bart Devreese; Mahalingeshwara K. Bhat; Jozef Van Beeumen; Marc Claeyssens
A series of omega-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant toelectrophilic attack of active-site carboxyl residues, glycosidehydrolases of family 11 (Thermomyces lanuginosus Xyn and Trichoderma reesei Xyn II) are irreversibly inhibited. Theapparent inactivation and association constants (k(i), 1/K(i)) are one order of magnitude higher for thexylobiose and xylotriose derivatives. The effects of the aglycone chainlength can clearly be described. Xylobiose and n-alkyl beta-D-xylopyranosides are competitive ligands and provide protectionagainst inactivation. MS measurements showed 1:1 stoichiometries inmost labelling experiments. Electrospray ionization MS/MS analysisrevealed the nucleophile Glu(86) as the modified residue inthe T. lanuginosus xylanase when 2,3-epoxypropyl beta-D-xylopyranoside was used, whereas the acid/base catalyst Glu(178) was modified by the 3,4-epoxybutyl derivative. The active-site residues Glu(86) and Glu(177) in T. reesei Xyn II are similarly modified, confirming earlier X-raycrystallographic data [Havukainen, Törrönen, Laitinen and Rouvinen (1996)Biochemistry 35, 9617-9624]. The inability of the omega-epoxyalkyl xylo(oligo)saccharide derivatives to inactivate family-10enzymes is discussed in terms of different ligand-subsiteinteractions.
Acta Crystallographica Section D-biological Crystallography | 1997
Leila Lo Leggio; Neil J. Parry; J. Van Beeumen; Marc Claeyssens; Mahalingeshwara K. Bhat; Richard W. Pickersgill
The major endoglucanase (35 kDa) from the thermophilic fungus Thermoascus aurantiacus has been purified from culture filtrates using an affinity method and the sequence for 35 N-terminal amino acids determined. This has allowed assignment of the enzyme to subtype A6 of family 5 endoglucanases. The enzyme has been crystallized as thick plates by the hanging-drop method using ammonium sulfate as precipitant. The crystals belong to space group P2(1)2(1)2(1) with cell edges a = 76.4, b = 85.7 and c = 89.5 A, with two molecules in the asymmetric unit, and diffract to 1.62 A resolution using synchrotron radiation. The structure will be solved by isomorphous replacement.
International Journal of Biological Macromolecules | 1994
Paul Christakopoulos; Mahalingeshwara K. Bhat; Dimitris Kekos; Basil J. Macris
Abstract Purified β-glucosidase from Fusarium oxysporum catalyses hydrolysis and transglycosylation reactions. By utilizing the transglycosylation reaction, trisaccharides and alkyl β- d -glucosides were synthesized under optimal conditions in the presence of various disaccharides and alcohols. The yields of trisaccharides and alkyl β- d -glucosides were 22–37% and 10–33% of the total sugar, respectively. The enzyme retained 70–80% of its original activity in the presence of 25% (w/v) methanol, ethanol and propanol. Thus, β-glucosidase from F. oxysporum appears to be an ideal enzyme for the synthesis of useful trisaccharides and alkyl β- d -glucosides.