Maham Rais
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maham Rais.
International Journal of Obesity | 2016
Judy L. Cameron; Ruhee Jain; Maham Rais; Ashley E. White; Tomasz M. Beer; P Kievit; Kerri M. Winters-Stone; Ilhem Messaoudi; Oleg Varlamov
Background/Objectives:Androgen deprivation therapy (ADT) is commonly used for treatment of prostate cancer but is associated with side effects, such as sarcopenia and insulin resistance. The role of lifestyle factors such as diet and exercise on insulin sensitivity and body composition in testosterone-deficient males is poorly understood. The aim of the present study was to examine the relationships between androgen status, diet and insulin sensitivity.Subjects/Methods:Middle-aged (11–12 years old) intact and orchidectomized male rhesus macaques were maintained for 2 months on a standard chow diet and then exposed for 6 months to a Western-style, high-fat/calorie-dense diet (WSD) followed by 4 months of caloric restriction (CR). Body composition, insulin sensitivity, physical activity, serum cytokine levels and adipose biopsies were evaluated before and after each dietary intervention.Results:Both intact and orchidectomized animals gained similar proportions of body fat, developed visceral and subcutaneous adipocyte hypertrophy and became insulin resistant in response to the WSD. CR reduced body fat in both groups but reversed insulin resistance only in intact animals. Orchidectomized animals displayed progressive sarcopenia, which persisted after the switch to CR. Androgen deficiency was associated with increased levels of interleukin-6 and macrophage-derived chemokine (C-C motif chemokine ligand 22), both of which were elevated during CR. Physical activity levels showed a negative correlation with body fat and insulin sensitivity.Conclusions:Androgen deficiency exacerbated the negative metabolic side effects of the WSD such that CR alone was not sufficient to improve altered insulin sensitivity, suggesting that ADT patients will require additional interventions to reverse insulin resistance and sarcopenia.
PLOS ONE | 2016
Suhas Sureshchandra; Maham Rais; Cara Stull; Kathleen A. Grant; Ilhem Messaoudi
It is well established that heavy ethanol consumption interferes with the immune system and inflammatory processes, resulting in increased risk for infectious and chronic diseases. However, these processes have yet to be systematically studied in a dose and sex-dependent manner. In this study, we investigated the impact of chronic heavy ethanol consumption on gene expression using RNA-seq in peripheral blood mononuclear cells isolated from female rhesus macaques with daily consumption of 4% ethanol available 22hr/day for 12 months resulting in average ethanol consumption of 4.3 g/kg/day (considered heavy drinking). Differential gene expression analysis was performed using edgeR and gene enrichment analysis using MetaCore™. We identified 1106 differentially expressed genes, meeting the criterion of ≥ two-fold change and p-value ≤ 0.05 in expression (445 up- and 661 down-regulated). Pathway analysis of the 879 genes with characterized identifiers showed that the most enriched gene ontology processes were “response to wounding”, “blood coagulation”, “immune system process”, and “regulation of signaling”. Changes in gene expression were seen despite the lack of differences in the frequency of any major immune cell subtype between ethanol and controls, suggesting that heavy ethanol consumption modulates gene expression at the cellular level rather than altering the distribution of peripheral blood mononuclear cells. Collectively, these observations provide mechanisms to explain the higher incidence of infection, delay in wound healing, and increase in cardiovascular disease seen in subjects with Alcohol use disorder.
Journal of Immunology | 2017
Suhas Sureshchandra; Randall M. Wilson; Maham Rais; Nicole Marshall; Jonathan Q. Purnell; Kent L. Thornburg; Ilhem Messaoudi
Prepregnancy maternal obesity is associated with adverse outcomes for the offspring, including increased incidence of neonatal bacterial sepsis and necrotizing enterocolitis. We recently reported that umbilical cord blood (UCB) monocytes from babies born to obese mothers generate a reduced IL-6/TNF-α response to TLR 1/2 and 4 ligands compared to those collected from lean mothers. These observations suggest altered development of the offspring’s immune system, which in turn results in dysregulated function. We therefore investigated transcriptional and epigenetic differences within UCB monocytes stratified by prepregnancy maternal body mass index. We show that UCB monocytes from babies born to obese mothers generate a dampened response to LPS stimulation compared with those born to lean mothers, at the level of secreted immune mediators and transcription. Because gene expression profiles of resting UCB monocytes from both groups were comparable, we next investigated the role of epigenetic differences. Indeed, we detected stark differences in methylation levels within promoters and regulatory regions of genes involved in TLR signaling in resting UCB monocytes. Interestingly, the DNA methylation status of resting cells was highly predictive of transcriptional changes post-LPS stimulation, suggesting that cytosine methylation is one of the dominant mechanisms driving functional inadequacy in UCB monocytes obtained from babies born to obese mothers. These data highlight a potentially critical role of maternal pregravid obesity-associated epigenetic changes in influencing the function of an offspring’s monocytes at birth. These findings further our understanding of mechanisms that explain the increased risk of infection in neonates born to mothers with high prepregnancy body mass index.
Viral Immunology | 2016
Andrea Rivera; Tasha Barr; Maham Rais; Flora Engelmann; Ilhem Messaoudi
microRNAs (miRNAs) are small noncoding RNAs that are key regulators of biological processes, including the immune response to viral infections. Differential expression levels of cellular miRNAs and their predicted targets have been described in the lungs of H1N1-infected BALB/c mice, the lungs of H5N1 influenza-infected cynomolgus macaques, and in peripheral blood mononuclear cells (PBMCs) of critically ill patients infected with 2009 pandemic H1N1. However, a longitudinal analysis of changes in the expression of miRNAs and their targets during influenza infection and how they relate to viral replication and host response has yet to be carried out. In the present study, we conducted a comprehensive analysis of innate and adaptive immune responses as well as the expression of several miRNAs and their validated targets in both peripheral blood and bronchoalveolar lavage (BAL) collected from rhesus macaques over the course of infection with the 2009 H1N1 virus A/Mexico/4108/2009 (MEX4108). We describe a distinct set of differentially expressed miRNAs in BAL and PBMCs, which regulate the expression of genes involved in inflammation, immune response, and regulation of cell cycle and apoptosis.
BMC Genomics | 2017
Ilhem Messaoudi; Mithila Handu; Maham Rais; Suhas Sureshchandra; Byung Park; Suzanne S. Fei; Hollis Wright; Ashley E. White; Ruhee Jain; Judy L. Cameron; Kerri M. Winters-Stone; Oleg Varlamov
BackgroundReduced physical activity and increased intake of calorically-dense diets are the main risk factors for obesity, glucose intolerance, and type 2 diabetes. Chronic overnutrition and hyperglycemia can alter gene expression, contributing to long-term obesity complications. While caloric restriction can reduce obesity and glucose intolerance, it is currently unknown whether it can effectively reprogram transcriptome to a pre-obesity level. The present study addressed this question by the preliminary examination of the transcriptional dynamics in skeletal muscle after exposure to overnutrition and following caloric restriction.ResultsSix male rhesus macaques of 12–13 years of age consumed a high-fat western-style diet for 6 months and then were calorically restricted for 4 months without exercise. Skeletal muscle biopsies were subjected to longitudinal gene expression analysis using next-generation whole-genome RNA sequencing. In spite of significant weight loss and normalized insulin sensitivity, the majority of WSD-induced (n = 457) and WSD-suppressed (n = 47) genes remained significantly dysregulated after caloric restriction (FDR ≤0.05). The MetacoreTM pathway analysis reveals that western-style diet induced the sustained activation of the transforming growth factor-β gene network, associated with extracellular matrix remodeling, and the downregulation of genes involved in muscle structure development and nutritional processes.ConclusionsWestern-style diet, in the absence of exercise, induced skeletal muscle transcriptional programing, which persisted even after insulin resistance and glucose intolerance were completely reversed with caloric restriction.
Scientific Reports | 2016
Nicole Arnold; Thomas Girke; Suhas Sureshchandra; Christina Nguyen; Maham Rais; Ilhem Messaoudi
Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.
Frontiers in Physiology | 2018
Suhas Sureshchandra; Nicole Marshall; Randall M. Wilson; Tasha Barr; Maham Rais; Jonathan Q. Purnell; Kent L. Thornburg; Ilhem Messaoudi
Pre-pregnancy (pregravid) obesity has been linked to several adverse health outcomes for both mother and offspring. Complications during pregnancy include increased risk for gestational diabetes, hypertension, preeclampsia, placental abruption, and difficulties during delivery. Several studies suggest that these negative outcomes are mediated by heightened systemic inflammation as well as changes in placental development and function. However, the molecular mechanisms by which pregravid obesity affects these processes are poorly understood. In this study, we aimed to address this question by carrying out a comprehensive analysis of the systemic maternal immune system coupled with placental gene expression and microbial profiling at term delivery (11 lean and 14 obese). Specifically, we examined the impact of pregravid obesity on circulating cytokines, chemokine, adipokines, and growth factors using multiplex Luminex assay. Innate and adaptive immune cell frequencies and their cytokine production in response to stimuli were measured using flow cytometry. Finally, changes in placental transcriptome and microbiome were profiled using RNA- and 16S-sequencing, respectively. Pregravid obesity is characterized by insulin and leptin resistance, high levels of circulating inflammatory markers IL-6 and CRP, in addition to chemokine IL-8 (p < 0.01). Moreover, pregravid obesity was associated with lower frequency of naïve CD4+ T-cells (p < 0.05), increased frequency of memory CD4+ T-cells (p < 0.01), and a shift towards Th2 cytokine production (p = 0.05). Myeloid cells from the obese cohort produced higher levels of pro-inflammatory cytokines but lower levels of chemokines following TLR stimulation (p < 0.05). Lastly, pregravid obesity is associated with increased abundance of Bacteroides and changes in the expression of genes important for nutrient transport and immunity (FDR < 0.05). Collectively, these data indicate that pregravid obesity is associated with heightened systemic inflammation and of dysregulated nutrient transport in the placenta and provide insight into the basis of fetal reprogramming.
Asn Neuro | 2018
Maham Rais; Devin K. Binder; Khaleel A. Razak; Iryna M. Ethell
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 (Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Archive | 2017
Andrea Rivera; Maham Rais; Tasha Barr; Nicole Arnold; Suhas Sureshchandra; Ilhem Messaoudi
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
BMC Genomics | 2017
Ilhem Messaoudi; Mithila Handu; Maham Rais; Suhas Sureshchandra; Byung Park; Suzanne S. Fei; Hollis Wright; Ashley E. White; Ruhee Jain; Judy L. Cameron; Kerri M. Winters-Stone; Oleg Varlamov
1. The title for Additional file 2: Table S1 should indicate the list of differentially expressed WSD/ Chow genes (instead of WSD/CR). The correct title on the figure and within the article should therefore be: Additional file 2: Table S1. The list of differentially expressed WSD/CHOW genes identified in the present study. 2. The title for Additional file 2: Table S2 should indicate the list of differentially expressed CR/Chow genes (instead of CR/WSD). The correct title on the figure and within the article should therefore be: Additional file 2: Table S2. The list of differentially expressed CR/CHOW genes identified in the present study.