Mahamoudou B. Touré
University of Bamako
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahamoudou B. Touré.
Malaria Journal | 2010
Günter C. Müller; John C. Beier; Sekou F. Traore; Mahamoudou B. Touré; Mohamed M Traore; Sekou Bah; Seydou Doumbia; Yosef Schlein
BackgroundBased on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa.MethodsControl and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity.ResultsImmediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions.ConclusionThis study in Mali shows that even a single application of ATSB can substantially decrease malaria vector population densities and longevity. It is likely that ATSB methods can be used as a new powerful tool for the control of malaria vectors, particularly since this approach is highly effective for mosquito control, technologically simple, inexpensive, and environmentally safe.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Nicholas C. Manoukis; Jeffrey R. Powell; Mahamoudou B. Touré; Adama Sacko; Frances E. Edillo; Mamadou Coulibaly; Sekou F. Traore; Charles E. Taylor; Nora J. Besansky
The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via “ecotypification,” a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species.
Malaria Journal | 2010
Günter C. Müller; John C. Beier; Sekou F. Traore; Mahamoudou B. Touré; Mohamed M Traore; Sekou Bah; Seydou Doumbia; Yosef Schlein
BackgroundBased on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control.MethodsThree field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light.ResultsOf the 26 fruits and seedpods tested, 6 were attractive to An. gambiae s.l. females and males, respectively. Guava (Psidium guajava) and honey melon (Cucumis melo) were the two most attractive fruits for both females and males. Of the 26 flowering plants tested, 9 were significantly attractive for females, and 8 were attractive for males. Acacia macrostachya was the most attractive flowering plant. Periodicity studies using this plant showed peaks of An. gambiae s.l. attraction between 1930 and 2200 h and 0400-0500 h, which differed considerably from the response to human odors, which expectedly peaked at around midnight.ConclusionThese field experiments in Mali highlight that female and male An. gambiae s.l. have pronounced differences in attraction for diverse types of indigenous fruits/seedpods and flowering plants. The identification of attractive fruits and seedpods shows that a variety of indigenous and locally abundant natural products could potentially be used as juices to make ATSB solution for mosquito control. As well, the simple methods used to identify the most attractive flowering plants provide valuable insights into the natural history of sugar feeding for An. gambiae s.l. These observations can be used to guide future strategies for employing ATSB methods for malaria vector control in Africa. They also provide a basis for subsequent chemical analysis and development of attractive baits for mosquito control.
Malaria Journal | 2010
John M. Marshall; Mahamoudou B. Touré; Mohamed M Traore; Shannon Famenini; Charles E. Taylor
BackgroundGenetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009.MethodsThe sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes.ResultsMost participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable.ConclusionsAlthough there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising.
Malaria Journal | 2014
Rowida Baeshen; Nkiru E. Ekechukwu; Mahamoudou B. Touré; Doug Paton; Mamadou Coulibaly; Sekou F. Traore; Frédéric Tripet
BackgroundEffective mating between laboratory-reared males and wild females is paramount to the success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically modified male mosquitoes. However mosquito colonization and laboratory maintenance have the potential to negatively affect male genotypic and phenotypic quality through inbreeding and selection, which in turn can decrease male mating competitiveness in the field. To date, very little is known about the impact of those evolutionary forces on the reproductive biology of mosquito colonies and how they ultimately affect male reproductive fitness.MethodsHere several male reproductive physiological traits likely to be affected by inbreeding and selection following colonization and laboratory rearing were examined. Sperm length, and accessory gland and testes size were compared in male progeny from field-collected females and laboratory strains of Anopheles gambiae sensu stricto colonized from one to over 25 years ago. These traits were also compared in the parental and sequentially derived, genetically modified strains produced using a two-phase genetic transformation system. Finally, genetic crosses were performed between strains in order to distinguish the effects of inbreeding and selection on reproductive traits.ResultsSperm length was found to steadily decrease with the age of mosquito colonies but was recovered in refreshed strains and crosses between inbred strains therefore incriminating inbreeding costs. In contrast, testes size progressively increased with colony age, whilst accessory gland size quickly decreased in males from colonies of all ages. The lack of heterosis in response to crossing and strain refreshing in the latter two reproductive traits suggests selection for insectary conditions.ConclusionsThese results show that inbreeding and selection differentially affect reproductive traits in laboratory strains overtime and that heterotic ‘supermales’ could be used to rescue some male reproductive characteristics. Further experiments are needed to establish the exact relationship between sperm length, accessory gland and testes size, and male reproductive success in the laboratory and field settings.
PLOS ONE | 2014
Jenny Hill; Kassoum Kayentao; Mahamoudou B. Touré; Sory Diarwara; Jane Bruce; James Smedley; Ogobara K. Doumbo; Feiko O. ter Kuile; Jayne Webster
Background WHO recommends intermittent-preventive-treatment (IPTp) with sulphadoxine-pyrimethamine (SP) and insecticide-treated-nets (ITNs) to prevent malaria in pregnancy in sub-Saharan Africa, however uptake remains unacceptably low. We evaluated the effectiveness of antenatal clinics (ANC) to deliver two doses of IPTp and ITNs to pregnant women in Segou district, Mali. Methods We used household data to assess the systems effectiveness of ANC to deliver IPTp and ITNs to pregnant women and used logistic regression to identify predictors of ANC attendance, receipt of IPTp and ITN use during pregnancy, and the impact on community effectiveness. Results Of 81% of recently pregnant women who made at least one ANC visit, 59% of these attended during the eligible gestational age for IPTp. Of these, 82% reported receiving one dose of SP and 91% attended ANC again, of whom 66% received a second dose, resulting in a cumulative effectiveness for 2-dose IPTp of 29%, most of whom used an ITN (90%). Cumulative effectiveness of 2-dose SP by directly observed therapy (DOT) was very low (6%). ITN use was 92%, and ANC was the main source (81%). Reported and ANC-card data showed some doses of SP are given to women in their first trimester. Women were less likely to receive two doses by DOT if they were married (OR 0.10; CI 0.03, 0.40), or lived <5 km from the health facility (OR 0.34; CI 0.14, 0.83). A high household person-LLIN ratio predicted low ITN use in pregnant women (OR 0.16; CI 0.04, 0.55). Conclusion Our findings suggest poor adherence by health workers to provision of IPTp by eligible gestational age and DOT, contributing to low effectiveness of this strategy in this setting. ITN delivery and use among women was substantially higher. Efforts to improve health worker adherence to IPTp guidelines are needed to improve service delivery of IPTp.
PLOS ONE | 2013
Doug Paton; Mahamoudou B. Touré; Adama Sacko; Mamadou Coulibaly; Sekou F. Traore; Frédéric Tripet
Anopheles gambiae sensu stricto, the main vector of malaria in Africa, is characterized by its vast geographical range and complex population structure. Assortative mating amongst the reproductively isolated cryptic forms that co-occur in many areas poses unique challenges for programs aiming to decrease malaria incidence via the release of sterile or genetically-modified mosquitoes. Importantly, whether laboratory-rearing affects the ability of An. gambiae individuals of a given cryptic taxa to successfully mate with individuals of their own form in field conditions is still unknown and yet crucial for mosquito-releases. Here, the independent effects of genetic and environmental factors associated with laboratory rearing on male and female survival, mating success and assortative mating were evaluated in the Mopti form of An. gambiae over 2010 and 2011. In semi-field enclosures experiments and despite strong variation between years, the overall survival and mating success of male and female progeny from a laboratory strain was not found to be significantly lower than those of the progeny of field females from the same population. Adult progeny from field-caught females reared at the larval stage in the laboratory and from laboratory females reared outdoors exhibited a significant decrease in survival but not in mating success. Importantly, laboratory individuals reared as larvae indoors were unable to mate assortatively as adults, whilst field progeny reared either outdoors or in the laboratory, as well as laboratory progeny reared outdoors all mated significantly assortatively. These results highlight the importance of genetic and environment interactions for the development of An. gambiaes full mating behavioral repertoire and the challenges this creates for mosquito rearing and release-based control strategies.
Journal of Medical Entomology | 2006
Nicholas C. Manoukis; Mahamoudou B. Touré; Ibrahim Sissoko; Seydou Doumbia; Sekou F. Traore; Maria A. Diuk-Wasser; Charles E. Taylor
Abstract Malaria vectors can reach very high densities in villages near irrigated rice fields in Africa, leading to the expectation that malaria should be especially prevalent there. Surprisingly, this is not always the case. In Niono, Mali, villages from nonirrigated areas have higher malaria prevalence than those within the irrigated regions, which suffer from higher mosquito numbers. One hypothesis explaining this observation is that mosquitoes from irrigated fields with high densities are inefficient vectors. This could occur if higher larval densities lead to smaller mosquitoes that suffer elevated mortality. Three predictions of the hypothesis were studied. First, the effect of larval density on larval body size was measured for both Anopheles gambiae Giles and Anopheles funestus Giles. Second, the relationship between larval and adult body size was tested. Third, evidence of an effect of adult size on survivorship in both irrigated and nonirrigated villages during the wet and dry seasons was sought. There was a modest positive relationship between densities of immatures and larval size, and a strong relationship between larval and adult size. Furthermore, adult survivorship was higher in nonirrigated areas. However, there was no effect of size on survivorship between comparable samples from both the irrigated and nonirrigated zones. Although density may have a causal relationship with reduced transmission in the irrigated areas of Niono, it is unlikely to be because higher density leads to smaller body size and lower survivorship.
Medical and Veterinary Entomology | 2012
Günter C. Müller; Jerome A. Hogsette; John C. Beier; Sekou F. Traore; Mahamoudou B. Touré; Mohamed M Traore; Sekou Bah; Seydou Doumbia; Yosef Schlein
The attraction of three Stomoxys species to 26 fruits and 26 flowers of different plant species was investigated in two different sites in Mali during 2008. Stomoxys niger bilineatus Grunberg (Diptera: Muscidae) was attracted to a wider spectrum of species, significantly attracted by four fruits and eight flowers compared with control traps, whereas S. sitiens Rondani (Diptera: Muscidae) was attracted to six fruits and seven flowers of different plants, and S. calcitrans L. (Diptera: Muscidae) was only attracted to one fruit and three flowers. Cold anthrone assays showed a significantly higher prevalence of sugar feeding amongst all three species at the lagoon site than at the site near Mopti. The rhythm of activity study shows temporally separated blood‐ and sugar‐feeding periods for S. niger bilineatus and S. sitiens, but not for S. calcitrans. A comparison between blood and sugar feeding throughout the day shows that sugar feeding activity is as frequent as blood feeding activity. Because not much is known about the preferred sugar sources for Stomoxys species in their natural habitats, the present study provides valuable information regarding the attraction capability of several plants with possible future implication for Stomoxys control strategies.
Scientific Reports | 2018
John M. Marshall; Sean L. Wu; M C Hector Sanchez; Samson S. Kiware; Micky Ndhlovu; André Lin Ouédraogo; Mahamoudou B. Touré; Hugh J. W. Sturrock; Azra C. Ghani; Neil M. Ferguson
As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3–5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns – a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively “absorbed” as they move outwards from their origin of travel. The gravity model provided a better fit to the data overall and for travel to large populations, while the radiation model provided a better fit for nearby populations. One strength of the data set was that trips could be categorized according to traveler group – namely, women traveling with children in all survey countries and youth workers in Mali. For gravity models fitted to data specific to these groups, youth workers were found to have a higher travel frequency to large population centers, and women traveling with children a lower frequency. These models may help predict the spatial transmission of malaria parasites and inform strategies to control their spread.