Mahendra Awale
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahendra Awale.
Journal of Chemical Information and Modeling | 2013
Mahendra Awale; Ruud van Deursen; Jean-Louis Reymond
The MQN-mapplet is a Java application giving access to the structure of small molecules in large databases via color-coded maps of their chemical space. These maps are projections from a 42-dimensional property space defined by 42 integer value descriptors called molecular quantum numbers (MQN), which count different categories of atoms, bonds, polar groups, and topological features and categorize molecules by size, rigidity, and polarity. Despite its simplicity, MQN-space is relevant to biological activities. The MQN-mapplet allows localization of any molecule on the color-coded images, visualization of the molecules, and identification of analogs as neighbors on the MQN-map or in the original 42-dimensional MQN-space. No query molecule is necessary to start the exploration, which may be particularly attractive for nonchemists. To our knowledge, this type of interactive exploration tool is unprecedented for very large databases such as PubChem and GDB-13 (almost one billion molecules). The application is freely available for download at www.gdb.unibe.ch.
Journal of Cheminformatics | 2015
Mahendra Awale; Xian Jin; Jean-Louis Reymond
AbstractBackgroundTools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures).ResultsMolecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances.Conclusions3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug discovery projects. Graphical abstractAtom pair fingerprints based on through-space distances (3DAPfp) provide better shape encoding than atom pair fingerprints based on topological distances (APfp) as measured by the recovery of ROCS shape analogs by fp similarity.
Journal of Chemical Information and Modeling | 2013
Julian Schwartz; Mahendra Awale; Jean-Louis Reymond
SMIfp (SMILES fingerprint) is defined here as a scalar fingerprint describing organic molecules by counting the occurrences of 34 different symbols in their SMILES strings, which creates a 34-dimensional chemical space. Ligand-based virtual screening using the city-block distance CBD(SMIfp) as similarity measure provides good AUC values and enrichment factors for recovering series of actives from the directory of useful decoys (DUD-E) and from ZINC. DrugBank, ChEMBL, ZINC, PubChem, GDB-11, GDB-13, and GDB-17 can be searched by CBD(SMIfp) using an online SMIfp-browser at www.gdb.unibe.ch. Visualization of the SMIfp chemical space was performed by principal component analysis and color-coded maps of the (PC1, PC2)-planes, with interactive access to the molecules enabled by the Java application SMIfp-MAPPLET available from www.gdb.unibe.ch. These maps spread molecules according to their fraction of aromatic atoms, size and polarity. SMIfp provides a new and relevant entry to explore the small molecule chemical space.
Nucleic Acids Research | 2014
Mahendra Awale; Jean-Louis Reymond
To confirm the activity of an initial small molecule ‘hit compound’ from an activity screening, one needs to probe the structure–activity relationships by testing close analogs. The multi-fingerprint browser presented here (http://dcb-reymond23.unibe.ch:8080/MCSS/) enables one to rapidly identify such close analogs among commercially available compounds in the ZINC database (>13 million molecules). The browser retrieves nearest neighbors of any query molecule in multi-dimensional chemical spaces defined by four different fingerprints, each of which represents relevant structural and pharmacophoric features in a different way: sFP (substructure fingerprint), ECFP4 (extended connectivity fingerprint), MQNs (molecular quantum numbers) and SMIfp (SMILES fingerprint). Distances are calculated using the city-block distance, a similarity measure that performs as well as Tanimoto similarity but is much faster to compute. The list of up to 1000 nearest neighbors of any query molecule is retrieved by the browser and can be then clustered using the K-means clustering algorithm to produce a focused list of analogs with likely similar bioactivity to be considered for experimental evaluation.
Journal of Chemical Information and Modeling | 2014
Mahendra Awale; Jean-Louis Reymond
Three-dimensional (3D) molecular shape and pharmacophores are important determinants of the biological activity of organic molecules; however, a precise computation of 3D-shape is generally too slow for virtual screening of very large databases. A reinvestigation of the concept of atom pairs initially reported by Carhart et al. and extended by Schneider et al. showed that a simple atom pair fingerprint (APfp) counting atom pairs at increasing topological distances in 2D-structures without atom property assignment correlates with various representations of molecular shape extracted from the 3D-structures. A related 55-dimensional atom pair fingerprint extended with atom properties (Xfp) provided an efficient pharmacophore fingerprint with good performance for ligand-based virtual screening such as the recovery of active compounds from decoys in DUD, and overlap with the ROCS 3D-pharmacophore scoring function. The APfp and Xfp data were organized for web-based extremely fast nearest-neighbor searching in ZINC (13.5 M compounds) and GDB-17 (50 M random subset) freely accessible at www.gdb.unibe.ch .
Journal of Medicinal Chemistry | 2016
Falco Kilchmann; Maria José Marcaida; Sachin Kotak; Thomas Schick; Silvan D. Boss; Mahendra Awale; Pierre Gönczy; Jean-Louis Reymond
Here we report the discovery of a selective inhibitor of Aurora A, a key regulator of cell division and potential anticancer target. We used the atom category extended ligand overlap score (xLOS), a 3D ligand-based virtual screening method recently developed in our group, to select 437 shape and pharmacophore analogs of reference kinase inhibitors. Biochemical screening uncovered two inhibitor series with scaffolds unprecedented among kinase inhibitors. One of them was successfully optimized by structure-based design to a potent Aurora A inhibitor (IC50 = 2 nM) with very high kinome selectivity for Aurora kinases. This inhibitor locks Aurora A in an inactive conformation and disrupts binding to its activator protein TPX2, which impairs Aurora A localization at the mitotic spindle and induces cell division defects. This phenotype can be rescued by inhibitor-resistant Aurora A mutants. The inhibitor furthermore does not induce Aurora B specific effects in cells.
Journal of Cheminformatics | 2014
Lars Ruddigkeit; Mahendra Awale; Jean-Louis Reymond
The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a “fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space.
Bioorganic & Medicinal Chemistry | 2012
Mahendra Awale; Jean-Louis Reymond
DrugBank (>6000 approved and experimental drugs) was analyzed using molecular quantum numbers (MQNs), which are 42 integer value descriptors of molecular structure counting atoms, bonds, polar groups and topological features. Principal component analysis of MQN-space showed that drugs differ mostly by size (PC1, 67% variance) and structural rigidity and polarity (PC2, 18% variance). Twenty-eight groups of target specific drugs were recovered by proximity sorting in MQN-space as efficiently as by substructure fingerprint (SF) similarity, but in different order allowing for lead-hopping relationships not seen in SF similarity. Clustering by MQN- or SF-similarity produced very different types of clusters. Each of the 28 drug groups spread over different clusters in both MQN- and SF-clustering, and most clusters contained drugs from different target specific groups, showing that structure-based classifications only partially overlap with bioactivity. An MQN-browsable version of DrugBank is available at www.gdb.unibe.ch.
Journal of Chemical Information and Modeling | 2017
Ricardo Visini; Mahendra Awale; Jean-Louis Reymond
To better understand chemical space we recently enumerated the database GDB-17 containing 166.4 billion possible molecules up to 17 atoms of C, N, O, S and halogen following the simple rules of chemical stability and synthetic feasibility. However, due to the combinatorial explosion caused by systematic enumeration GDB-17 is strongly biased toward the largest, functionally and stereochemically most complex molecules and far too large for most virtual screening tools. Herein we selected a much smaller subset of GDB-17, called the fragment database FDB-17, which contains 10 million fragmentlike molecules evenly covering a broad value range for molecular size, polarity, and stereochemical complexity. The database is available at www.gdb.unibe.ch for download and free use, together with an interactive visualization application and a Web-based nearest neighbor search tool to facilitate the selection of new fragment-sized molecules for chemical synthesis.
Journal of Cheminformatics | 2017
Mahendra Awale; Jean-Louis Reymond
Background Several web-based tools have been reported recently which predict the possible targets of a small molecule by similarity to compounds of known bioactivity using molecular fingerprints (fps), however predictions in each case rely on similarities computed from only one or two fps. Considering that structural similarity and therefore the predicted targets strongly depend on the method used for comparison, it would be highly desirable to predict targets using a broader set of fps simultaneously.ResultsHerein, we present the polypharmacology browser (PPB), a web-based platform which predicts possible targets for small molecules by searching for nearest neighbors using ten different fps describing composition, substructures, molecular shape and pharmacophores. PPB searches through 4613 groups of at least 10 same target annotated bioactive molecules from ChEMBL and returns a list of predicted targets ranked by consensus voting scheme and p value. A validation study across 670 drugs with up to 20 targets showed that combining the predictions from all 10 fps gives the best results, with on average 50% of the known targets of a drug being correctly predicted with a hit rate of 25%. Furthermore, when profiling a new inhibitor of the calcium channel TRPV6 against 24 targets taken from a safety screen panel, we observed inhibition in 5 out of 5 targets predicted by PPB and in 7 out of 18 targets not predicted by PPB. The rate of correct (5/12) and incorrect (0/12) predictions for this compound by PPB was comparable to that of other web-based prediction tools.ConclusionPPB offers a versatile platform for target prediction based on multi-fingerprint comparisons, and is freely accessible at www.gdb.unibe.ch as a valuable support for drug discovery.Graphical abstract.