Maher Al Rwahnih
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maher Al Rwahnih.
Virus Research | 2012
Maher Al Rwahnih; Valerian V. Dolja; Steve Daubert; Eugene V. Koonin; Adib Rowhani
Deep sequencing analysis of an asymptomatic grapevine revealed a virome containing five RNA viruses and a viroid. Of these, Grapevine leafroll-associated virus 7 (GLRaV-7), an unassigned closterovirus, was by far the most prominently represented sequence in the analysis. Graft-inoculation of the infection to another grape variety confirmed the lack of the leafroll disease symptoms, even though GLRaV-7 could be detected in the inoculated indicator plants. A 16,496 nucleotide-long genomic sequence of this virus was determined from the deep sequencing data. Its genome architecture and the sequences encoding its nine predicted proteins were compared with those of other closteroviruses. The comparison revealed that two other viruses, Little cherry virus-1 and Cordyline virus-1 formed a well supported phylogenetic cluster with GLRaV-7.
Phytopathology | 2015
Maher Al Rwahnih; Steve Daubert; Deborah A. Golino; Christina M. Islas; Adib Rowhani
A bioassay is routinely used to determine the viral phytosanitary status of commercial grapevine propagation material in many countries around the world. That test is based on the symptoms developed in the field by specific indicator host plants that are graft-inoculated from the vines being tested. We compared the bioassay against next-generation sequencing (NGS) analysis of grapevine material. NGS is a laboratory procedure that catalogs the genomic sequences of the viruses and other pathogens extracted as DNA and RNA from infected vines. NGS analysis was found to be superior to the standard bioassay in detection of viruses of agronomic significance, including virus infections at low titers. NGS was also found to be superior to the bioassay in its comprehensiveness, the speed of its analysis, and for the discovery of novel, uncharacterized viruses.
Journal of Virology | 2012
Maher Al Rwahnih; Mysore R. Sudarshana; J.K. Uyemoto; Adib Rowhani
ABSTRACT A novel virus-like sequence from grapevine was identified by Illumina sequencing. The complete genome is 7,551 nucleotides in length, with polyadenylation at the 3′ end. Translation of the sequence revealed five open reading frames (ORFs). The genomic organization was most similar to those of vitiviruses. The polymerase (ORF1) and coat protein (ORF4) genes shared 31 to 49% nucleotide and 40 to 70% amino acid sequence identities, respectively, with other grapevine vitiviruses. The virus was tentatively named grapevine virus F (GVF).
Phytopathology | 2015
Sudeep Bag; Maher Al Rwahnih; Ashley Li; Asaul Gonzalez; Adib Rowhani; Jerry K. Uyemoto; Mysore R. Sudarshana
In spring 2013, 5-year-old nectarine (Prunus persica) trees, grafted on peach rootstock Nemaguard, were found stunted in a propagation block in California. These trees had been propagated from budwood of three nectarine cultivars imported from France and cleared through the post-entry quarantine procedure. Examination of the canopy failed to reveal any obvious symptoms. However, examination of the trunks, after stripping the bark, revealed extensive pitting on the woody cylinder. To investigate the etiological agent, double-stranded RNA was extracted from bark scrapings from the scion and rootstock portions, and a cDNA library was prepared and sequenced using the Illumina platform. BLAST analysis of the contigs generated by the de novo assembly of sequence reads indicated the presence of a novel luteovirus. Complete sequence of the viral genome was determined by sequencing of three overlapping cDNA clones generated by reverse transcription-polymerase chain reaction (RT-PCR) and by rapid amplification of the 5- and 3-termini. The virus genome was comprised of 4,991 nucleotides with a gene organization similar to members of the genus Luteovirus (family Luteoviridae). The presence of the virus, tentatively named Nectarine stem pitting-associated virus, was confirmed in symptomatic trees by RT-PCR. Discovery of a new virus in nectarine trees after post-entry quarantine indicates the importance of including (i) metagenomic analysis by next-generation sequencing approach as an essential tool to assess the plant health status, and (ii) examination of the woody cylinders as part of the indexing process.
Phytopathology | 2017
Maher Al Rwahnih; Olufemi J. Alabi; Nathaniel Westrick; Deborah A. Golino; Adib Rowhani
A novel virus was detected in grapevines by Illumina sequencing during the screening of two table grape (Vitis vinifera) accessions, cultivars Black Beet and Nagano Purple, from South Korea. The monopartite circular ssDNA genome sequence was subsequently confirmed by rolling cycle amplification, cloning and Sanger sequencing. The complete viral genomic sequence from both accessions ranged from 2,903 to 2,907 nucleotides in length and contained the conserved nonanucleotide sequence TAATATT↓AC and other sequence features typical of the family Geminiviridae, including two predicted sense and four complementary-sense open reading frames. Phylogenetic analysis placed the novel virus in a unique taxon within the family Geminiviridae. A naturally occurring defective subviral DNA was also discovered. This defective DNA molecule carried a deletion of approximately 46% of the full-length genome. Both the genomic and defective DNA molecules were graft-transmissible although no disease is yet correlated with their occurrence in Vitis spp. The tentative names Grapevine geminivirus A (GGVA) and GGVA defective DNA (GGVA D-DNA) are proposed. PCR assays developed using primers designed in the coat protein gene led to the detection of GGVA in 1.74% of 1,262 vines derived from 15 grapevine cultivars from six countries across three continents.
Journal of Virological Methods | 2012
Maher Al Rwahnih; Fatima Osman; Mysore R. Sudarshana; J.K. Uyemoto; Angelantonio Minafra; P. Saldarelli; G. P. Martelli; Adib Rowhani
Nine isolates of Grapevine leafroll-associated virus 7 (GLRaV-7) from diverse geographical regions were sequenced to design more sensitive molecular diagnostic tools. The coat protein (CP) and heat shock protein 70 homologue (HSP70h) genes of these nine isolates were sequenced. Sequences were then used to design more sensitive molecular diagnostic tools. Sequence identity among these isolates ranged between 90 to 100% at the nucleotide and amino acid levels. One RT-PCR and two qRT-PCR assays were used to survey 86 different grapevines from the University of California, Davis Grapevine Virus Collection, the Foundation Plant Services collection and the USDA National Clonal Germplasm Repository, Davis, CA with primers designed in conserved regions of the CP and HSP70h genes. Results revealed that qRT-PCR assays designed in the HSP70h gene was more sensitive (29.07% positives) than that designed in the CP gene (22.09% positives) and both qRT-PCR assays proved to be more sensitive than RT-PCR.
Phytopathology | 2014
Olufemi J. Alabi; Maher Al Rwahnih; Tefera A. Mekuria; Rayapati A. Naidu
Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.
Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2015
Maher Al Rwahnih; Adib Rowhani; Deborah A. Golino; Christina M. Islas; John E. Preece; Mysore R. Sudarshana
Abstract Grapevine red blotch-associated virus (GRBaV) is a recently discovered ssDNA virus that is widespread in wine grapes in California. We investigated whether GRBaV infection was present in 156 table grape accessions of Vitis vinifera that included 53 accessions exhibiting leafroll-like symptoms and 81 accessions from diverse geographic origins. Cane samples were collected during the dormant season in 2012 and analysed for GRBaV infection by PCR. A total of 73 accessions showed presence of GRBaV and these included raisin and table grape accessions with black, green and red berries. A 557 bp amplicon obtained by PCR was purified and sequenced, and the phylogenetic relationship among GRBaV isolates was examined by the maximum likelihood method. The maximum genetic variability among the isolates was only 8% and they belonged to two clades. Although it is not yet known if GRBaV is present outside of North America, 54 accessions from sources originating outside of North America tested positive for the virus.
Virus Genes | 2013
Maher Al Rwahnih; Steve Daubert; Mysore R. Sudarshana; Adib Rowhani
We have identified the genome of a novel viral satellite in deep sequence analysis of double-stranded RNA from grapevine. The genome was 1,060 bases in length, and encoded two open reading frames. Neither frame was related to any known plant virus gene. But translation of the longer frame showed a protein sequence similar to those of other plant virus satellites. Other than in commonalities they shared in this gene sequence, members of that group were extensively divergent. The reading frame in this gene from the novel satellite could be translationally coupled to an adjacent reading frame in the −1 register, through overlapping start/stop codons. These overlapping AUGA start/stop codons were adjacent to a sequence that could be folded into a pseudoknot structure. Field surveys with PCR probes specific for the novel satellite revealed its presence in 3xa0% of the grapevines (nxa0=xa0346) sampled.
Genome Announcements | 2016
Maher Al Rwahnih; Olufemi J. Alabi; Nathaniel Westrick; Deborah A. Golino; Adib Rowhani
ABSTRACT A novel virus-like sequence from grapevine was identified by Illumina sequencing. The genomic organization was most similar to that of members of the genus Fabavirus. Polyproteins RNA-1 and RNA-2 of the virus tentatively named grapevine fabavirus (GFabV) shared 34 to 23% sequence identities with Broad bean wilt virus 2 (BBWV2), respectively. GFabV was successfully graft transmitted to Vitis vinifera cv. Cabernet Franc.