Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahesh Thirunavukkarasu is active.

Publication


Featured researches published by Mahesh Thirunavukkarasu.


Journal of Cellular and Molecular Medicine | 2008

Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium

S. Varma Penumathsa; Mahesh Thirunavukkarasu; Lijun Zhan; Gautam Maulik; Venugopal Padmanaban Menon; Debasis Bagchi; Nilanjana Maulik

Homeostasis of blood glucose by insulin involves stimulation of glucose uptake by translocation of glucose transporter Glut‐4 from intracellular pool to the caveolar membrane system. In this study we examined resveratrol (RSV)‐mediated Glut‐4 translocation in the streptozotocin (STZ)‐induced diabetic myocardium. The rats were randomized into three groups: Control (Con), Diabetes Mellitus (DM) (STZ 65 mg/kg b.w., i.p.) & DM + RSV (2.5 mg/kg b.wt. for 2 weeks orally) (RSV). Isolated rat hearts were used as per the experimental model. RSV induced glucose uptake was observed in vitro with H9c2 cardiac myoblast cells. Decreased blood glucose level was observed after 30 days (375 mg/dl) in RSV‐treated rats when compared to DM (587 mg/dl). Treatment with RSV demonstrated increased Adenosine Mono Phosphate Kinase (AMPK) phosphorylation compared to DM. Lipid raft fractions demonstrated decreased expression of Glut‐4, Cav‐3 (0.4, 0.6‐fold) in DM which was increased to 0.75‐and 1.1‐fold on RSV treatment as compared to control. Increased Cav‐1 expression (1.4‐fold) in DM was reduced to 0.7‐fold on RSV treatment. Increased phosphorylation of endothelial Nitric Oxide Synthase (eNOS) & Akt was also observed in RSV compared to DM (P< 0.05). Confocal microscopy and co‐immunoprecipitation studies demonstrated decreased association of Glut‐4/Cav‐3 and increased association of Cav‐1/eNOS in DM as compared to control and converse results were obtained on RSV treatment. Our results suggests that the effect of RSV is non‐insulin dependent and triggers some of the similar intracellular insulin signalling components in myocardium such as eNOS, Akt through AMPK pathway and also by regulating the caveolin‐1 and caveolin‐3 status that might play an essential role in Glut‐4 translocation and glucose uptake in STZ‐ induced type‐1 diabetic myocardium.


Circulation | 2010

Thioredoxin-1 Gene Therapy Enhances Angiogenic Signaling and Reduces Ventricular Remodeling in Infarcted Myocardium of Diabetic Rats

Samson Mathews Samuel; Mahesh Thirunavukkarasu; Suresh Varma Penumathsa; Srikanth Koneru; Lijun Zhan; Gautam Maulik; Perumana R. Sudhakaran; Nilanjana Maulik

Background— The present study evaluated the reversal of diabetes-mediated impairment of angiogenesis in a myocardial infarction model of type 1 diabetic rats by intramyocardial administration of an adenoviral vector encoding thioredoxin-1 (Ad.Trx1). Various studies have linked diabetes-mediated impairment of angiogenesis to dysfunctional antioxidant systems in which thioredoxin-1 plays a central role. Methods and Results— Ad.Trx1 was administered intramyocardially in nondiabetic and diabetic rats immediately after myocardial infarction. Ad.LacZ was similarly administered to the respective control groups. The hearts were excised for molecular and immunohistochemical analysis at predetermined time points. Myocardial function was measured by echocardiography 30 days after the intervention. The Ad.Trx1-administered group exhibited reduced fibrosis, oxidative stress, and cardiomyocyte and endothelial cell apoptosis compared with the diabetic myocardial infarction group, along with increased capillary and arteriolar density. Western blot and immunohistochemical analysis demonstrated myocardial overexpression of thioredoxin-1, heme oxygenase-1, vascular endothelial growth factor, and p38 mitogen-activated protein kinase-β, as well as decreased phosphorylated JNK and p38 mitogen-activated protein kinase-α, in the Ad.Trx1-treated diabetic group. Conversely, we observed a significant reduction in the expression of vascular endothelial growth factor in nondiabetic and diabetic animals treated with tin protoporphyrin (SnPP, a heme oxygenase-1 enzyme inhibitor), even after Ad.Trx1 therapy. Echocardiographic analysis after 4 weeks of myocardial infarction revealed significant improvement in myocardial functional parameters such as ejection fraction, fractional shortening, and E/A ratio in the Ad.Trx1-administered group compared with the diabetic myocardial infarction group. Conclusions— This study demonstrates for the first time that impairment of angiogenesis and myocardial dysfunction can be regulated by Ad.Trx1 gene therapy in streptozotocin-induced diabetic rats subjected to infarction.


Journal of Agricultural and Food Chemistry | 2008

Akt/FOXO3a/SIRT1-Mediated Cardioprotection by n-Tyrosol against Ischemic Stress in Rat in Vivo Model of Myocardial Infarction : Switching Gears toward Survival and Longevity

Samson Mathews Samuel; Mahesh Thirunavukkarasu; Suresh Varma Penumathsa; Debayon Paul; Nilanjana Maulik

Moderate consumption of wine has been associated with decreased risk of cardiovascular events. Recently we have shown that white wine is equally as cardioprotective as red wine. However, unlike resveratrol (polyphenol in red wine), the white wine component, n-tyrosol [2-(4-hydroxyphenyl)ethanol] has not been explored for its cardioprotective effect and mechanism of action. Therefore, the present study was designed to evaluate the effect of tyrosol treatment (5 mg/kg/day for 30 days) on myocardial ischemic stress in a rat in vivo model of Myocardial Infarction (MI) and to identify key molecular targets involved in this mechanism. MI was induced by Left Anterior Descending (LAD) coronary artery ligation. Reduced infarct size (32.42 vs 48.03%) and cardiomyocyte apoptosis (171 vs 256 counts/100 HPF) were observed along with improvement in the myocardial functional parameters such as LVIDs (5.89 vs 6.58 mm), ejection fraction (51.91 vs 45.09%), and fractional shortening (28.46 vs 23.52%) as assessed by echocardiography in the tyrosol-treated animals when compared to the nontreated controls. We have also observed significant increase in the phosphorylation of Akt (1.4-fold), eNOS (3-fold) and FOXO3a (2.6-fold). In addition, tyrosol induced the expression of longevity protein SIRT1 (3.2-fold) in the MI group as compared to the non-treated MI control. Therefore tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the white wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart. However, human intervention studies would be necessary before establishing any recommendations about dietary habits for tyrosol intake or administration of dietary supplements containing tyrosol.


Journal of Molecular and Cellular Cardiology | 2011

Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice.

Ram Sudheer Adluri; Mahesh Thirunavukkarasu; Lijun Zhan; Yuzo Akita; Samson Mathews Samuel; Hajime Otani; Ye-Shih Ho; Gautam Maulik; Nilanjana Maulik

Oxidative stress plays a crucial role in disruption of neovascularization by alterations in thioredoxin 1 (Trx1) expression and its interaction with other proteins after myocardial infarction (MI). We previously showed that Trx1 has angiogenic properties, but the possible therapeutic significance of overexpressing Trx1 in chronic MI has not been elucidated. Therefore, we explored the angiogenic and cardioprotective potential of Trx1 in an in vivo MI model using transgenic mice overexpressing Trx1. Wild-type (W) and Trx1 transgenic (Trx1(Tg/+)) mice were randomized into W sham (WS), Trx1(Tg/+) sham (TS), WMI, and TMI. MI was induced by permanent occlusion of LAD coronary artery. Hearts from mice overexpressing Trx1 exhibited reduced fibrosis and oxidative stress and attenuated cardiomyocyte apoptosis along with increased vessel formation compared to WMI. We found significant inhibition of Trx1 regulating proteins, TXNIP and AKAP 12, and increased p-Akt, p-eNOS, p-GSK-3β, HIF-1α, β-catenin, VEGF, Bcl-2, and survivin expression in TMI compared to WMI. Echocardiography performed 30days after MI revealed significant improvement in myocardial functions in TMI compared to WMI. Our study identifies a potential role for Trx1 overexpression and its association with its regulatory proteins TXNIP, AKAP12, and subsequent activation of Akt/GSK-3β/β-catenin/HIF-1α-mediated VEGF and eNOS expression in inducing angiogenesis and reduced ventricular remodeling. Hence, Trx1 and other proteins identified in our study may prove to be potential therapeutic targets in the treatment of ischemic heart disease.


Journal of Cellular and Molecular Medicine | 2008

Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1

Srikanth Koneru; Suresh Varma Penumathsa; Mahesh Thirunavukkarasu; Ramesh Vidavalur; Lijun Zhan; Pawan K. Singal; Richard M. Engelman; Dipak K. Das; Nilanjana Maulik

Sildenafil citrate (SC), a drug for erectile dysfunction, is now emerging as a cardiopulmonary drug. Our study aimed to determine a novel role of sildenafil on cardioprotection through stimulating angiogenesis during ischaemia (I) reperfusion (R) at both capillary and arteriolar levels and to examine the role of vascular endothelial growth factor (VEGF) and angiopoietin‐1 (Ang‐1) in this mechanistic effect. Rats were divided into: control sham (CS), sildenafil sham (SS), control + IR (CIR) and sildenafil + IR (SIR). Rats were given 0.7 mg/kg, (i.v) of SC or saline 30 min. before occlusion of left anterior descending artery followed by reperfusion (R). Sildenafil treatment increased capillary and arteriolar density followed by increased blood flow (2‐fold) compared to control. Treatment with sildenafil demonstrated increased VEGF and Ang‐1 mRNA after early reperfusion. PCR data were validated by Western blot analysis. Significant reduction in infarct size, cardiomyocyte and endothelial apoptosis were observed in SC‐treated rats. Increased phosphorylation of Akt, eNOS and expression of anti‐apoptotic protein Bcl‐2, and thioredoxin, hemeoxygenase‐1 were observed in SC‐treated rats. Echocardiography demonstrated increased fractional shortening and ejection fraction following 45 days of reperfusion in the treatment group. Stress testing with dobutamine infusion and echocardiogram revealed increased contractile reserve in the treatment group. Our study demonstrated for the first time a strong additional therapeutic potential of sildenafil by up‐regulating VEGF and Ang‐1 system, probably by stimulating a cascade of events leading to neovascularization and conferring myocardial protection in in vivo I/R rat model.


Diabetes | 2010

Coadministration of adenoviral vascular endothelial growth factor and angiopoietin-1 enhances vascularization and reduces ventricular remodeling in the infarcted myocardium of type 1 diabetic rats.

Samson Mathews Samuel; Yuzo Akita; Debayon Paul; Mahesh Thirunavukkarasu; Lijun Zhan; Perumana R. Sudhakaran; Chuanfu Li; Nilanjana Maulik

OBJECTIVE Hyperglycemia impairs angiogenesis in response to ischemia, leading to ventricular remodeling. Although the effects of overexpressing angiogenic growth factors have been studied in inducing angiogenesis, the formation of functional vessels remains a challenge. The present study evaluates the reversal of diabetes-mediated impairment of angiogenesis in the infarcted diabetic rat myocardium by proangiogenic gene therapy. RESEARCH DESIGN AND METHODS Ad.VEGF and Ad.Ang1 were intramyocardially administered in combination immediately after myocardial infarction to nondiabetic and diabetic rats. Ad.LacZ was similarly administered to the respective control groups. The hearts were excised for molecular and immunohistochemical analysis at predetermined time points. The myocardial function was measured by echocardiography 30 days after the intervention. RESULTS We observed reduced fibrosis and increased capillary/arteriolar density along with reduced ventricular remodeling, as assessed by echocardiography in the treated diabetic animals compared with the nontreated diabetic controls. We also observed increased phosphorylated mitogen-activated protein kinase–activated protein kinase-2, 2 days after the treatment and increased expression of vascular endothelial growth factor (VEGF), Flk-1, angiopoietin-1 (Ang-1), Tie-2, and survivin, 4 days after treatment in the diabetic animals. Gel shift analysis revealed that the combination gene therapy stimulated the DNA binding activity of nuclear factor-κB in the diabetic animals. CONCLUSIONS Our preclinical data demonstrate the efficacy of coadministration of adenoviral VEGF and Ang-1 in increasing angiogenesis and reducing ventricular remodeling in the infarcted diabetic myocardium. These unique results call for the initiation of a clinical trial to assess the efficacy of this therapeutic strategy in the treatment of diabetes-related human heart failure.


Biochimica et Biophysica Acta | 2009

Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury.

Suresh Varma Penumathsa; Mahesh Thirunavukkarasu; Samson Mathews Samuel; Lijun Zhan; Gautam Maulik; Manashi Bagchi; Debasis Bagchi; Nilanjana Maulik

Diabetes, one of the major risk factors of metabolic syndrome culminates in the development of Ischemic Heart Disease (IHD). Refined diets that lack micronutrients, mainly trivalent chromium (Cr(3+)) have been identified as the contributor in the rising incidence of diabetes. We investigated the effect of niacin-bound chromium (NBC) during ischemia/reperfusion (IR) injury in streptozotocin induced diabetic rats. Rats were randomized into: Control (Con); Diabetic (Dia) and Diabetic rats fed with NBC (Dia+NBC). After 30 days of treatment, the isolated hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion. NBC treatment demonstrated significant increase in left ventricular functions and significant reduction in infarct size and cardiomyocyte apoptosis in Dia+NBC compared with Dia. Increased Glut-4 translocation to the lipid raft fractions was also observed in Dia+NBC compared to Dia. Reduced Cav-1 and increased Cav-3 expression along with phosphorylation of Akt, eNOS and AMPK might have resulted in increased Glut-4 translocation in Dia+NBC. Our results indicate that the cardioprotective effect of NBC is mediated by increased activation of AMPK, Akt and eNOS resulting in increased translocation of Glut-4 to the caveolar raft fractions thereby alleviating the effects of IR injury in the diabetic myocardium.


Journal of Molecular and Cellular Cardiology | 2008

Growth factor/s and cell therapy in myocardial regeneration

Nilanjana Maulik; Mahesh Thirunavukkarasu

Despite significant advances in myocardial revascularization and reperfusion, coronary artery disease and subsequently myocardial infarction, are the leading cause of morbidity and mortality in the US. Thus one of the main goals in the treatment of myocardial ischemia is the development of effective therapy for angiogenesis. The first evidence is the demonstration of alleviation of myocardial ischemia and increased number of collateral blood vessels in the early 1990s following intra-coronary administration of basic fibroblast growth factor protein in dog. Multiple animal studies, has confirmed the concept of stimulation of collateral development by pharmacological and molecular means. This includes direct delivery of growth factors into the ischemic target tissues, or of genes that encode for synthesis of growth factors by target tissues. Both cell therapy and gene therapy have proven to be effective to promote neovascularization in various animal models. Cell therapy alone is proven to be beneficial however the combination of cell and gene therapy (growth factors) may enhance therapeutic neovascularization. Thus clinically relevant, combined strategy could be an excellent strategy for treating patients with myocardial infarction.


Antioxidants & Redox Signaling | 2011

Disruption of Hypoxia-Inducible Transcription Factor-Prolyl Hydroxylase Domain-1 (PHD-1−/−) Attenuates Ex Vivo Myocardial Ischemia/Reperfusion Injury Through Hypoxia-Inducible Factor-1α Transcription Factor and Its Target Genes in Mice

Ram Sudheer Adluri; Mahesh Thirunavukkarasu; Nageswara Rao Dunna; Lijun Zhan; Babatunde Oriowo; Kotaro Takeda; Juan A. Sanchez; Hajime Otani; Gautam Maulik; Guo-Hua Fong; Nilanjana Maulik

Hypoxia-inducible transcription factor (HIF)-prolyl hydroxylases domain (PHD-1-3) are oxygen sensors that regulate the stability of the HIFs in an oxygen-dependent manner. Suppression of PHD enzymes leads to stabilization of HIFs and offers a potential treatment option for many ischemic disorders, such as peripheral artery occlusive disease, myocardial infarction, and stroke. Here, we show that homozygous disruption of PHD-1 (PHD-1(-/-)) could facilitate HIF-1α-mediated cardioprotection in ischemia/reperfused (I/R) myocardium. Wild-type (WT) and PHD-1(-/-) mice were randomized into WT time-matched control (TMC), PHD-1(-/-) TMC (PHD1TMC), WT I/R, and PHD-1(-/-) I/R (PHD1IR). Isolated hearts from each group were subjected to 30 min of global ischemia followed by 2 h of reperfusion. TMC hearts were perfused for 2 h 30 min without ischemia. Decreased infarct size (35%±0.6% vs. 49%±0.4%) and apoptotic cardiomyocytes (106±13 vs. 233±21 counts/100 high-power field) were observed in PHD1IR compared to wild-type ischemia/reperfusion (WTIR). Protein expression of HIF-1α was significantly increased in PHD1IR compared to WTIR. mRNA expression of β-catenin (1.9-fold), endothelial nitric oxide synthase (1.9-fold), p65 (1.9-fold), and Bcl-2 (2.7-fold) were upregulated in the PHD1IR compared with WTIR, which was studied by real-time quantitative polymerase chain reaction. Further, gel-shift analysis showed increased DNA binding activity of HIF-1α and nuclear factor-kappaB in PHD1IR compared to WTIR. In addition, nuclear translocation of β-catenin was increased in PHD1IR compared with WTIR. These findings indicated that silencing of PHD-1 attenuates myocardial I/R injury probably by enhancing HIF-1α/β-catenin/endothelial nitric oxide synthase/nuclear factor-kappaB and Bcl-2 signaling pathway.


Journal of Molecular and Cellular Cardiology | 2008

Upregulation of myocardial 11S-activated proteasome in experimental hyperglycemia

Saul R. Powell; Samson Mathews Samuel; Ping Wang; Andras Divald; Mahesh Thirunavukkarasu; Srikanth Koneru; Xuejun Wang; Nilanjana Maulik

This study examined the hypothesis that the ubiquitin proteasome system (UPS) degrades proteins damaged by exposure to hyperglycemia. Experimental hyperglycemia was induced in male rats by treatment with streptozotocin. After 30 days, echocardiography confirmed the presence of cardiomyopathy as ejection fraction, fractional shortening, and diastolic function (E/A ratio) were decreased, and chamber diameter was increased in hyperglycemic animals. Proteasome non-ATP-dependent chymotryptic activity was increased over 2-fold in hyperglycemic hearts, but the ATP-dependent activity was decreased and levels of ubiquitinated proteins were increased. Protein levels of the PA28alpha of the 11S-activator ring were increased by 128% and the PA28beta subunit increased by 58% in the hyperglycemic hearts. The alpha3 subunit of the 20S-proteasome was increased by 82% while the catalytic beta5 subunit was increased by 68% in hyperglycemic hearts. Protein oxidation as indicated by protein carbonyls was significantly higher in hyperglycemic hearts. These studies support the conclusion that the UPS becomes dysfunctional during long term hyperglycemia. However, 11S-activated proteasome was increased suggesting a response to oxidative protein damage and a potential role for this form of the proteasome in a cardiac pathophysiology.

Collaboration


Dive into the Mahesh Thirunavukkarasu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Zhan

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Suresh Varma Penumathsa

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan A. Sanchez

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Samson Mathews Samuel

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Srikanth Koneru

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hajime Otani

Kansai Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge