Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahfoud Assem is active.

Publication


Featured researches published by Mahfoud Assem.


Journal of Biological Chemistry | 2001

Disrupted Bile Acid Homeostasis Reveals an Unexpected Interaction among Nuclear Hormone Receptors, Transporters, and Cytochrome P450

Erin G. Schuetz; Stephen C. Strom; Kazuto Yasuda; Valerie Lecureur; Mahfoud Assem; Cynthia Brimer; Jatinder K. Lamba; Richard B. Kim; Bernard J. Komoroski; Raman Venkataramanan; Hongbo Cai; Christopher J. Sinal; Frank J. Gonzalez; John D. Schuetz

Sister of P-glycoprotein (SPGP) is the major hepatic bile salt export pump (BSEP). BSEP/SPGP expression varies dramatically among human livers. The potency and hierarchy of bile acids as ligands for the farnesyl/bile acid receptor (FXR/BAR) paralleled their ability to induce BSEP in human hepatocyte cultures. FXR:RXR heterodimers bound to IR1 elements and enhanced bile acid transcriptional activation of the mouse and human BSEP/SPGP promoters. In FXR/BAR nullizygous mice, which have dramatically reduced BSEP/SPGP levels, hepatic CYP3A11 and CYP2B10 were strongly but unexpectedly induced. Notably, the rank order of bile acids as CYP3A4 inducers and activators of pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR) closely paralleled each other but was markedly different from their hierarchy and potency as inducers of BSEP in human hepatocytes. Moreover, the hepatoprotective bile acid ursodeoxycholic acid, which reverses hydrophobic bile acid hepatotoxicity, activates PXR and efficaciously induces CYP3A4 (a bile-metabolizing enzyme) in primary human hepatocytes thus providing one mechanism for its hepatoprotection. Because serum and urinary bile acids increased in FXR/BAR −/− mice, we evaluated hepatic transporters for compensatory changes that might circumvent the profound decrease in BSEP/SPGP. We found weak MRP3 up-regulation. In contrast, MRP4 was substantially increased in the FXR/BAR nullizygous mice and was further elevated by cholic acid. Thus, enhanced hepatocellular concentrations of bile acids, due to the down-regulation of BSEP/SPGP-mediated efflux in FXR nullizygous mice, result in an alternate but apparent compensatory up-regulation of CYP3A, CYP2B, and some ABC transporters that is consistent with activation of PXR/SXR by bile acids.


Journal of Biological Chemistry | 2004

Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice

Mahfoud Assem; E G Schuetz; Markos Leggas; Daxi Sun; Kazuto Yasuda; Glen Reid; Noam Zelcer; Masashi Adachi; Stephen C. Strom; Ronald M. Evans; David D. Moore; Piet Borst; John D. Schuetz

The ABC transporter, Mrp4, transports the sulfated steroid DHEA-s, and sulfated bile acids interact with Mrp4 with high affinity. Hepatic Mrp4 levels are low, but increase under cholestatic conditions. We therefore inferred that up-regulation of Mrp4 during cholestasis is a compensatory mechanism to protect the liver from accumulation of hydrophobic bile acids. We determined that the nuclear receptor CAR is required to coordinately up-regulate hepatic expression of Mrp4 and an enzyme known to sulfate hydroxy-bile acids and steroids, Sult2a1. CAR activators increased Mrp4 and Sult2a1 expression in primary human hepatocytes and HepG2, a human liver cell line. Sult2a1 was down-regulated in Mrp4-null mice, further indicating an inter-relation between Mrp4 and Sult2a1 gene expression. Based on the hydrophilic nature of sulfated bile acids and the Mrp4 capability to transport sulfated steroids, our findings suggest that Mrp4 and Sult2a1 participate in an integrated pathway mediating elimination of sulfated steroid and bile acid metabolites from the liver.


Journal of Clinical Investigation | 2006

Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia

Changcheng Zhou; Mahfoud Assem; Jessica C. Tay; Paul B. Watkins; Bruce Blumberg; Erin G. Schuetz; Kenneth E. Thummel

The balance between bioactivation and degradation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is critical for ensuring appropriate biological effects of vitamin D. Cytochrome P450, family 24-mediated (CYP24-mediated) 24-hydroxylation of 1,25(OH)2D3 is an important step in the catabolism of 1,25(OH)2D3. The enzyme is directly regulated by vitamin D receptor (VDR), and it is expressed mainly in the kidney, where VDR is also abundant. A recent report suggests that activation of steroid and xenobiotic receptor (SXR) also enhances the expression of CYP24, providing a new molecular mechanism of drug-induced osteomalacia. However, here we showed that activation of SXR did not induce CYP24 expression in vitro and in vivo, nor did it transactivate the CYP24 promoter. Instead, SXR inhibited VDR-mediated CYP24 promoter activity, and CYP24 expression was very low in tissues containing high levels of SXR, including the small intestine. Moreover, 1,25(OH)2D3-induced CYP24 expression was enhanced in mice lacking the SXR ortholog pregnane X receptor, and treatment of humans with the SXR agonist rifampicin had no effect on intestinal CYP24 expression, despite demonstration of marked CYP3A4 induction. Combined with our previous findings that CYP3A4, not CYP24, plays the dominant role in hydroxylation of 1,25(OH)2D3 in human liver and intestine, our results indicate that SXR has a dual role in mediating vitamin D catabolism and drug-induced osteomalacia.


Journal of Cardiovascular Pharmacology | 1999

Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia.

Petr Dobšák; Carol Courderot-Masuyer; Marianne Zeller; Catherine Vergely; Aline Laubriet; Mahfoud Assem; J.C. Eicher; Jean-Raymond Teyssier; Jean-Eric Wolf; Luc Rochette

Formation of oxygen free radicals during heart transplantation seems to be related to the alterations occurring during ischemia and reperfusion and could explain the short preservation time of donor hearts. The aim of our study was (a) to analyze the protective effects of pyruvate during cold cardioplegia and ischemia/reperfusion sequence, and (b) to investigate in vitro the radical scavenging properties of this compound. After 30 min of perfusion, isolated working rat hearts were arrested by cardioplegic solution, stored 4 h in B21 solutions at 4 degrees C, and reperfused with Krebs-Henseleit buffer for 45 min. Pyruvate (2 mM) was added to Krebs-Henseleit, cardioplegic, and storage solutions, and functional parameters were recorded throughout the experiments. In a second part, control hearts and hearts treated with pyruvate were cannulated via the aorta and perfused for 30 min by the Langendorff method, arrested by cardioplegic solution, stored 4 h in B21 solutions at 4 degrees C, and reperfused for 45 min by the Langendorff method. Malonedialdehyde and alpha-tocopherol levels were determined on heart homogenate. In situ detection of apoptotic cells also was performed on tissue samples (left ventricle) at the end of the ischemia/reperfusion sequence. To demonstrate in vitro the antioxidant effects of pyruvate, we monitored (a) its hydroxyl radical scavenging properties by using electron paramagnetic resonance (EPR) spectroscopy, and (b) the decrease of fluorescence of allophycocyanin, in the presence of a Fenton system (H2O2/Cu2+). Ischemia for 4 h, followed by myocardial reperfusion, resulted in substantially reduced mechanical function. Hearts subjected to this ischemia and pretreated with pyruvate showed a significant improvement in the function recovery. After the ischemia/reperfusion protocol, no significant decrease of malonedialdehyde levels was shown on hearts treated with pyruvate. However, alpha-tocopherol levels were higher in the pyruvate group compared with the control group. At the end of the reperfusion period, levels of apoptotic cells were significantly lower in hearts treated with pyruvate compared with control hearts. EPR studies showed that pyruvate was an efficient hydroxyl scavenger, with a median inhibitory concentration (IC50) of 8 mM. The allophycocyanin assay also showed a dose-dependent effect of pyruvate against hydroxyl radicals. In conclusion, these findings showed that pyruvate could prevent reperfusion injuries in the isolated heart, probably by its antioxidative properties. The application of pyruvate may contribute to the preservation of hearts for organ transplantation.


Journal of the National Cancer Institute | 2008

The SWI/SNF Chromatin-Remodeling Complex and Glucocorticoid Resistance in Acute Lymphoblastic Leukemia

Nicolas Pottier; Wenjian Yang; Mahfoud Assem; John C. Panetta; Deqing Pei; Steven W. Paugh; Cheng Cheng; Monique L. den Boer; Mary V. Relling; Rob Pieters; William E. Evans; Meyling Cheok

BACKGROUND Glucocorticoids are used in the curative treatment of acute lymphoblastic leukemia (ALL). Resistance to glucocorticoids is an important adverse prognostic factor in newly diagnosed ALL patients but its mechanism is unknown. Because SWI/SNF complex-mediated chromatin remodeling is required for glucocorticoid transcriptional activity in vitro, we investigated whether expression of subunits of the SWI/SNF complex was related to glucocorticoid resistance in ALL. METHODS Gene expression and in vitro sensitivity to prednisolone and dexamethasone were assessed in a training set of primary ALL cells from 177 children with newly diagnosed ALL and a validation set of cells from an independent cohort of 95 ALL patients. The global test method was used to select pathways whose genes were associated with drug sensitivity. Genes involved in chromatin remodeling were identified by use of the Gene Ontology database. Short hairpin RNA (shRNA) was used to knock down mRNA expression of SMARCA4 in glucocorticoid-sensitive Jurkat human ALL cells. Spearman rank correlation, multiple linear regression, and logistic regression were used to investigate associations between gene expression and glucocorticoid sensitivity. All statistical tests were two-sided. RESULTS Statistically significant associations between decreased expression in ALL cells of genes for core subunits of the SWI/SNF complex-SMARCA4, ARID1A, and SMARCB1-and resistance to prednisolone and dexamethasone were identified in the training cohort. In the validation cohort, expression of SMARCA4 (P < .001 and r = -0.43), ARID1A (P = .016 and r = -0.29), and SMARCB1 (P = .019 and r = -0.29) in ALL cells was statistically significantly associated with dexamethasone sensitivity, and SMARCA4 expression (P = .018 and r = -0.28) was statistically significantly associated with prednisolone sensitivity. Prednisolone resistance was higher in SMARCA4 shRNA-transfected Jurkat cells (drug concentration lethal to 50% of the leukemia cells [LC(50)] = 277 microM) than in control shRNA-transfected cells (LC(50) = 174 microM, difference = 103 microM, 95% confidence interval of the difference = 100 to 106 microM; P < .001, t test). CONCLUSION Decreased expression of as many as three subunits of the SWI/SNF complex appears to be associated with glucocorticoid resistance in primary ALL cells.


Drug Metabolism and Disposition | 2009

The Major Human Pregnane X Receptor (PXR) Splice Variant, PXR.2, Exhibits Significantly Diminished Ligand-Activated Transcriptional Regulation

Yvonne S. Lin; Kazuto Yasuda; Mahfoud Assem; Cynthia Cline; Joe Barber; Chia Wei Li; Vladyslav Kholodovych; Ni Ai; J. Don Chen; William J. Welsh; Sean Ekins; Erin G. Schuetz

The pregnane X receptor (PXR; PXR.1) can be activated by structurally diverse lipophilic ligands. PXR.2, an alternatively spliced form of PXR, lacks 111 nucleotides encoding 37 amino acids in the ligand binding domain. PXR.2 bound a classic CYP3A4 PXR response element (PXRE) in electrophoretic mobility shift assays, but transfected PXR.2 failed to transactivate a CYP3A4-promoter-luciferase reporter plasmid in HepG2 cells treated with various PXR ligands. Cotransfection experiments showed that PXR.2 behaved as a dominant negative, interfering with PXR.1/rifampin activation of CYP3A4-PXRE-LUC. In HepG2 and LS180 cells stably transduced with PXR.1, PXR target genes (CYP3A4, MDR1, CYP2B6, and UGT1A1) were higher than mock-transduced cells in the absence of ligand and were further induced in the presence of rifampin. In contrast, PXR.2 stably introduced into the same host cells failed to induce target genes over levels in mock-transfected cells after drug treatment. Our homology modeling suggests that ligands bind PXR.1 more favorably, probably because of the presence of a key disordered loop region, which is missing in PXR.2. Yeast two-hybrid assays revealed that, even in the presence of ligand, the corepressors remain tightly bound to PXR.2, and coactivators are unable to bind at helix 12. In summary, PXR.2 can bind to PXREs but fails to transactivate target genes because ligands do not bind the ligand binding domain of PXR.2 productively, corepressors remain tightly bound, and coactivators are not recruited to PXR.2.


PLOS ONE | 2013

NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR

Mohammad Alqudah; Supreet Agarwal; Maha S. Al-Keilani; Zita A. Sibenaller; Timothy C. Ryken; Mahfoud Assem

Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients’ outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Expression of the Pregnane X Receptor in Mice Antagonizes the Cholic Acid–Mediated Changes in Plasma Lipoprotein Profile

David Masson; Laurent Lagrost; Anne Athias; Philippe Gambert; Cynthia Brimer-Cline; Lubin Lan; John D. Schuetz; Erin G. Schuetz; Mahfoud Assem

Objective—Modification of lipoprotein metabolism by bile acids has been mainly explained by activation of the farnesyl X receptor (FXR). The aim of the present study was to determine the relative contribution of the pregnane X receptor (PXR), another bile acid–activated nuclear receptor to changes in plasma lipoprotein profile. Methods and Results—Wild-type mice, Pxr-deficient mice, and Pxr-null mice expressing human PXR (Pxr-null SXR-Tg mice) were fed a cholic acid–containing diet, and consequences on plasma lipoprotein profiles and target gene expression were assessed. Cholic acid produced significant decreases in high-density lipoprotein (HDL) cholesterol, plasma apolipoprotein (apo)A-I and hepatic apoA-I mRNA in wild-type mice. Interestingly, the effect of cholic acid was significantly more pronounced in Pxr-deficient mice, indicating that PXR contributes to the weakening of the effect of bile acids on lipoprotein metabolism. Reciprocally, changes in HDL/apoA-I profiles were abolished in Pxr-null SXR-Tg mice in which PXR-responsive genes, particularly those involved in bile acid detoxification were readily activated after cholic acid treatment. Conclusion—PXR expression in mice antagonizes the cholic acid–mediated downregulation of plasma HDL cholesterol and apoA-I, and magnification of PXR/SXR-mediated changes may constitute a new mean to counteract the effects of bile acids on plasma lipoproteins.


Biochimica et Biophysica Acta | 2002

Stage-dependent activation of cell cycle and apoptosis mechanisms in the right ventricle by pressure overload

Aline Ecarnot-Laubriet; Mahfoud Assem; F. Poirson-Bichat; Maryvonne Moisant; Colette Bernard; Sandrine Lecour; Eric Solary; Luc Rochette; Jean-Raymond Teyssier

The molecular basis of the intrinsic vulnerability of the compliant right ventricle to chronic pressure overload is poorly understood. Extensive apoptosis, possibly coupled with aberrant cell cycle reentry, in response to unrestrained biomechanical stress may account for this phenotypic flaw. To address this issue we have studied changes in expression of the cell cycle and apoptosis regulators in the right ventricle following induction of pulmonary hypertension in the rat by injection of monocrotaline. Hypertrophy, apoptosis and cell cycle events, as well as expression of their regulator genes were documented during a period of 31 days. The hypertrophy index reached 127% at day 31. At the early stage both apoptosis and cell proliferation pathways were coincidentally activated. The level of cyclin A and E transcripts steadily increased, the labeling index was 4.8% at day 31, and expression of the caspase-3 gene peaked at day 14. Until day 21 execution of apoptosis was prevented, probably by a high level of Bcl-2. At this time point Bcl-2 collapsed, cyclin D1 was upregulated, the differentiation gatekeeper p27Kip1 was downregulated, pro-caspase-3 was activated and extensive apoptosis developed. These results indicate that the right ventricle is especially vulnerable to apoptotic pressure-dependent stimuli, and that the cell cycle and apoptosis pathways were co-activated in this experimental model.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Constitutive Androstane Receptor Activation Decreases Plasma Apolipoprotein B–Containing Lipoproteins and Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice

Anne-Laure Sberna; Mahfoud Assem; Rui Xiao; Steve Ayers; Thomas Gautier; Boris Guiu; Valérie Deckert; Angélique Chevriaux; Jacques Grober; Naig Le Guern; Jean-Paul Pais de Barros; David D. Moore; Laurent Lagrost; David Masson

Objective—The goal of this study was to determine the impact of the nuclear receptor constitutive androstane receptor (CAR) on lipoprotein metabolism and atherosclerosis in hyperlipidemic mice. Methods and Results—Low-density lipoprotein receptor–deficient (Ldlr−/−) and apolipoprotein E–deficient (ApoE−/−) mice fed a Western-type diet were treated weekly with the Car agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or the vehicle only for 8 weeks. In Ldlr−/− mice, treatment with TCPOBOP induced a decrease in plasma triglyceride and intermediate-density lipoprotein/low-density lipoprotein cholesterol levels (≈30% decrease in both cases after 2 months, P<0.01). These mice also showed a significant reduction in the production of very-low-density lipoproteins associated with a decrease in hepatic triglyceride content and the repression of several genes involved in lipogenesis. TCPOBOP treatment also induced a marked increase in the very-low-density lipoprotein receptor in the liver, which probably contributed to the decrease in intermediate-density lipoprotein/low-density lipoprotein levels. Atherosclerotic lesions in the aortic valves of TCPOBOP-treated Ldlr−/− mice were also reduced (−60%, P<0.001). In ApoE−/− mice, which lack the physiological apoE ligand for the very-low-density lipoprotein receptor, the effect of TCPOBOP on plasma cholesterol levels and the development of atherosclerotic lesions was markedly attenuated. Conclusion—CAR is a potential target in the prevention and treatment of hypercholesterolemia and atherosclerosis.

Collaboration


Dive into the Mahfoud Assem's collaboration.

Top Co-Authors

Avatar

Erin G. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kazuto Yasuda

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge