Mahfuzur R. Sarker
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahfuzur R. Sarker.
Trends in Microbiology | 2011
Daniel Paredes-Sabja; Peter Setlow; Mahfuzur R. Sarker
Under conditions that are not conducive to growth, such as nutrient depletion, many members of the orders Bacillales and Clostridiales can sporulate, generating dormant and resistant spores that can survive in the absence of nutrients for years under harsh conditions. However, when nutrients are again present, these spores can return to active growth through the process of germination. Many of the components of the spore germination machinery are conserved between spore forming members of the Bacillales and Clostridiales orders. However, recent studies have revealed significant differences between the germination of spores of Clostridium perfringens and that of spores of a number of Bacillus species, both in the proteins and in the signal transduction pathways involved. In this review, the roles of components of the spore germination machinery of C. perfringens and several Bacillus species and the bioinformatic analysis of germination proteins in the Bacillales and Clostridiales orders are discussed and models for the germination of spores of these two orders are proposed.
Applied and Environmental Microbiology | 2000
Mahfuzur R. Sarker; Robert P. Shivers; Shauna G. Sparks; Vijay K. Juneja; Bruce A. McClane
ABSTRACT Clostridium perfringens enterotoxin (CPE) is an important virulence factor for both C. perfringens type A food poisoning and several non-food-borne human gastrointestinal diseases. Recent studies have indicated that C. perfringensisolates associated with food poisoning carry a chromosomalcpe gene, while non-food-borne human gastrointestinal disease isolates carry a plasmid cpe gene. However, no explanation has been provided for the strong associations between certain cpe genotypes and particular CPE-associated diseases. Since C. perfringens food poisoning usually involves cooked meat products, we hypothesized that chromosomalcpe isolates are so strongly associated with food poisoning because (i) they are more heat resistant than plasmid cpeisolates, (ii) heating induces loss of the cpe plasmid, or (iii) heating induces migration of the plasmid cpe gene to the chromosome. When we tested these hypotheses, vegetative cells of chromosomal cpe isolates were found to exhibit, on average approximately twofold-higher decimal reduction values (Dvalues) at 55°C than vegetative cells of plasmid cpeisolates exhibited. Furthermore, the spores of chromosomalcpe isolates had, on average, approximately 60-fold-higherD values at 100°C than the spores of plasmidcpe isolates had. Southern hybridization and CPE Western blot analyses demonstrated that all survivors of heating retained theircpe gene in its original plasmid or chromosomal location and could still express CPE. These results suggest that chromosomalcpe isolates are strongly associated with food poisoning, at least in part, because their cells and spores possess a high degree of heat resistance, which should enhance their survival in incompletely cooked or inadequately warmed foods.
International Journal of Tuberculosis and Lung Disease | 2014
K. J. M. Aung; A. Van Deun; E. Declercq; Mahfuzur R. Sarker; P. K. Das; M. A. Hossain; Hans L. Rieder
SETTING Tuberculosis (TB) program, Damien Foundation Projects, Bangladesh. OBJECTIVE To summarize the outcome and its determinants of the first treatment for multidrug-resistant TB using a standardized regimen consisting of a minimum 9 months. DESIGN This was a prospective, observational study of a gatifloxacin (GFX) based directly observed regimen, mainly with initial hospitalization. The 4-month intensive phase was extended until sputum smear conversion. Patients were monitored using culture for up to 2 years after treatment completion. RESULTS Of the 515 patients who met the study inclusion criteria and were successively enrolled from 2005 to 2011, 84.4% had a bacteriologically favorable outcome. Due to extensive disease with delayed sputum conversion, only half of the patients completed treatment within 9 months; however, 95% were able to complete treatment within 12 months. Eleven patients failed or relapsed, and 93.1% of the 435 patients who were successfully treated completed at least 12 months post-treatment follow-up. The strongest risk factor for a bacteriologically unfavorable outcome was high-level fluoroquinolone (FQ) resistance, particularly when compounded by initial pyrazinamide (PZA) resistance. Low-level FQ resistance had no unfavorable effect on treatment outcome. Amplification of drug resistance occurred only once, in a patient strain that was initially only susceptible to kanamycin and clofazimine. CONCLUSION The excellent outcome of the Bangladesh regimen was largely maintained. Bacteriological treatment failures and relapses were rare, except among patients with high-level GFX resistance, notably in the presence of PZA resistance.
Journal of Clinical Microbiology | 2001
Shauna G. Sparks; Robert J. Carman; Mahfuzur R. Sarker; Bruce A. McClane
ABSTRACT Clostridium perfringens type A isolates producing enterotoxin (CPE) are an important cause of food poisoning and non-food-borne human gastrointestinal (GI) diseases, including antibiotic-associated diarrhea (AAD). Recent studies suggest thatC. perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal cpe gene, while CPE-associated non-food-borne GI diseases, such as AAD, are caused by plasmid cpe isolates. Those putative relationships, obtained predominantly with European isolates, were tested in the current study by examining 34 cpe-positive,C. perfringens fecal isolates from North American cases of food poisoning or AAD. These North American disease isolates were all classified as type A using a multiplex PCR assay. Furthermore, restriction fragment length polymorphism and pulsed-field gel electrophoresis genotyping analyses showed the North American AAD isolates included in this collection all have a plasmid cpegene, but the North American food poisoning isolates all carry a chromosomal cpe gene. Western blotting demonstrated CPE expression by nearly all of these disease isolates, confirming their virulence potential. These findings with North American isolates provide important new evidence that, regardless of geographic origin or date of isolation, plasmid cpe isolates cause most CPE-associated AAD cases and chromosomal cpe isolates cause most C. perfringens type A food poisoning cases. These findings hold importance for the development of assays for distinguishing cases of CPE-associated food-borne and non-food-borne human GI illnesses and also identify potential epidemiologic tools for determining the reservoirs for these illnesses.
Molecular Microbiology | 2005
Derek J. Fisher; Kazuaki Miyamoto; Benjamin Harrison; Shigero Akimoto; Mahfuzur R. Sarker; Bruce A. McClane
Clostridium perfringens type A isolates carrying an enterotoxin (cpe) gene are an important cause of human gastrointestinal diseases, including food poisoning, antibiotic‐associated diarrhoea (AAD) and sporadic diarrhoea (SD). Using polymerase chain reaction (PCR), the current study determined that the cpb2 gene encoding the recently discovered beta2 toxin is present in <15% of food poisoning isolates, which typically carry a chromosomal cpe gene. However, >75% of AAD/SD isolates, which usually carry a plasmid cpe gene, tested cpb2+ by PCR. Western blot analysis demonstrated that >97% of those cpb2+/cpe+ AAD/SD isolates can produce CPB2. Additional PCR analyses, sequencing studies and pulsed field gel electrophoresis experiments determined that AAD/SD isolates carry cpb2 and cpe on the same plasmid when IS1151 sequences are present downstream of cpe, but cpb2 and cpe are located on different plasmids in AAD/SD isolates where IS1470‐like sequences are present downstream of cpe. Those analyses also demonstrated that two different CPB2 variants (named CPB2h1 or CPB2h2) can be produced by AAD/SD isolates, dependent on whether IS1470‐like or IS1151 sequences are present downstream of their cpe gene. CPB2h1 is ∼10‐fold more cytotoxic for CaCo‐2 cells than is CPB2h2. Collectively, these results suggest that CPB2 could be an accessory toxin in C. perfringens enterotoxin (CPE)‐associated AAD/SD.
Journal of Bacteriology | 2008
Daniel Paredes-Sabja; J. Antonio Torres; Peter Setlow; Mahfuzur R. Sarker
Clostridium perfringens food poisoning is caused by type A isolates carrying a chromosomal enterotoxin (cpe) gene (C-cpe), while C. perfringens-associated non-food-borne gastrointestinal (GI) diseases are caused by isolates carrying a plasmid-borne cpe gene (P-cpe). C. perfringens spores are thought to be the important infectious cell morphotype, and after inoculation into a suitable host, these spores must germinate and return to active growth to cause GI disease. We have found differences in the germination of spores of C-cpe and P-cpe isolates in that (i) while a mixture of L-asparagine and KCl was a good germinant for spores of C-cpe and P-cpe isolates, KCl and, to a lesser extent, L-asparagine triggered spore germination in C-cpe isolates only; and (ii) L-alanine or L-valine induced significant germination of spores of P-cpe but not C-cpe isolates. Spores of a gerK mutant of a C-cpe isolate in which two of the proteins of a spore nutrient germinant receptor were absent germinated slower than wild-type spores with KCl, did not germinate with L-asparagine, and germinated poorly compared to wild-type spores with the nonnutrient germinants dodecylamine and a 1:1 chelate of Ca2+ and dipicolinic acid. In contrast, spores of a gerAA mutant of a C-cpe isolate that lacked another component of a nutrient germinant receptor germinated at the same rate as that of wild-type spores with high concentrations of KCl, although they germinated slightly slower with a lower KCl concentration, suggesting an auxiliary role for GerAA in C. perfringens spore germination. In sum, this study identified nutrient germinants for spores of both C-cpe and P-cpe isolates of C. perfringens and provided evidence that proteins encoded by the gerK operon are required for both nutrient-induced and non-nutrient-induced spore germination.
Journal of Clinical Microbiology | 2003
Michael Waters; Amanda Savoie; Helen S. Garmory; Dawn M. Bueschel; Michel R. Popoff; J. Glenn Songer; Richard W. Titball; Bruce A. McClane; Mahfuzur R. Sarker
ABSTRACT Although Clostridium perfringens is recognized as an important cause of clostridial enteric diseases, only limited knowledge exists concerning the association of particular C. perfringens toxinotypes (type A to E) with gastrointestinal (GI) diseases in domestic animals. Some C. perfringens isolates also produce the newly discovered beta2-toxin (CPB2). Recent epidemiological studies suggested that C. perfringens isolates carrying the gene encoding CPB2 (cpb2) are strongly associated with clostridial GI diseases in domestic animals, including necrotic enteritis in piglets and typhlocolitis in horses. These putative relationships, obtained by PCR genotyping, were tested in the present study by further genotyping and phenotyping of 29 cpb2-positive C. perfringens isolates from pigs with GI disease (pig GI disease isolates). PCR and restriction fragment length polymorphism analysis reconfirmed the presence of cpb2 gene sequences in all the disease isolates included in the study. Furthermore, genotyping by pulsed-field gel electrophoresis analyses showed that the pig GI disease isolates included in this study all carry a plasmid cpb2 gene, yet no clonal relationships were detected between the cpb2-positive pig GI disease isolates surveyed. Finally, CPB2-specific Western blotting demonstrated CPB2 expression by all of the cpb2-positive isolates surveyed. The CPB2 proteins made by five of these pig GI disease isolates were shown to have the same deduced amino acid sequences as the biologically active CPB2 protein made by the original type C isolate, CWC245. Collectively, our present results support a significant association between CPB2-positive C. perfringens isolates and diarrhea in piglets.
Infection and Immunity | 2001
Sigrid Brynestad; Mahfuzur R. Sarker; Bruce A. McClane; Per Einar Granum; Julian I. Rood
ABSTRACT Clostridium perfringens enterotoxin is the major virulence factor involved in the pathogenesis of C. perfringens type A food poisoning and several non-food-borne human gastrointestinal illnesses. The enterotoxin gene,cpe, is located on the chromosome of food-poisoning isolates but is found on a large plasmid in non-food-borne gastrointestinal disease isolates and in veterinary isolates. To evaluate whether the cpe plasmid encodes its own conjugative transfer, a C. perfringens strain carrying pMRS4969, a plasmid in which a 0.4-kb segment internal to thecpe gene had been replaced by the chloramphenicol resistance gene catP, was used as a donor in matings with several cpe-negative C. perfringensisolates. Chloramphenicol resistance was transferred at frequencies ranging from 2.0 × 10−2 to 4.6 × 10−4 transconjugants per donor cell. The transconjugants were characterized by PCR, pulsed-field gel electrophoresis, and Southern hybridization analyses. The results demonstrated that the entire pMRS4969 plasmid had been transferred to the recipient strain. Plasmid transfer required cell-to-cell contact and was DNase resistant, indicating that transfer occurred by a conjugation mechanism. In addition, several fragments of the prototype C. perfringens tetracycline resistance plasmid, pCW3, hybridized with pMRS4969, suggesting that pCW3 shares some similarity to pMRS4969. The clinical significance of these findings is that if conjugative transfer of the cpe plasmid occurred in vivo, it would have the potential to convertcpe-negative C. perfringens strains in normal intestinal flora into strains capable of causing gastrointestinal disease.
Journal of Bacteriology | 2009
Daniel Paredes-Sabja; Peter Setlow; Mahfuzur R. Sarker
Clostridial spore germination requires degradation of the spores peptidoglycan (PG) cortex by cortex-lytic enzymes (CLEs), and two Clostridium perfringens CLEs, SleC and SleM, degrade cortex PG in vitro. We now find that only SleC is essential for cortex hydrolysis and viability of C. perfringens spores. C. perfringens sleC spores did not germinate completely with nutrients, KCl, or a 1:1 chelate of Ca(2+) and dipicolinic acid (Ca-DPA), and the colony-forming efficiency of sleC spores was 10(3)-fold lower than that of wild-type spores. However, sleC spores incubated with various germinants released most of their DPA, although slower than wild-type or sleM spores, and DPA release from sleC sleM spores was very slow. In contrast, germination and viability of sleM spores were similar to that of wild-type spores, although sleC sleM spores had 10(5)-fold-lower viability. These results allow the following conclusions about C. perfringens spore germination: (i) SleC is essential for cortex hydrolysis; (ii) although SleM can degrade cortex PG in vitro, this enzyme is not essential; (iii) action of SleC alone or with SleM can accelerate DPA release; and (iv) Ca-DPA does not trigger spore germination by activation of CLEs.
Journal of Bacteriology | 2008
Daniel Paredes-Sabja; Barbara Setlow; Peter Setlow; Mahfuzur R. Sarker
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spores dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.