Mahin Naserpour
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahin Naserpour.
Journal of Optics | 2015
Mahin Naserpour; Carlos J. Zapata-Rodríguez; Abdolnaser Zakery; Carlos Díaz-Aviñó; Juan Jose Miret
We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arranged in controlled orientations. This light shaping process, besides being of theoretical interest, is expected to open up a wide range of broadband application possibilities.
Applied Optics | 2015
Mahin Naserpour; Carlos J. Zapata-Rodríguez; Carlos Díaz-Aviñó; Mahdieh Hashemi; Juan Jose Miret
The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.
Scientific Reports | 2017
Mahin Naserpour; Carlos J. Zapata-Rodríguez; Slobodan Vuković; Hamid Pashaeiadl; Milivoj Belic
We investigate, both theoretically and numerically, a graphene-coated nano-cylinder illuminated by a plane electromagnetic wave in the far-infrared range of frequencies. We have derived an analytical formula that enables fast evaluation of the spectral window with a substantial reduction in scattering efficiency for a sufficiently thin cylinder. This polarization-dependent effect leads to tunable resonant invisibility that can be achieved via modification of graphene chemical potential monitored by the gate voltage. A multi-frequency cloaking mechanism based on dimer coated nanowires is also discussed in detail.
Optics Communications | 2016
Carlos Díaz-Aviñó; Mahin Naserpour; Carlos J. Zapata-Rodríguez
Abstract Highly anisotropic plasmonic nanotubes exhibit a dramatic drop of the scattering cross section in the transition regime from hyperbolic to elliptic dispersion. The characterization of a realistic multilayered metamaterial is typically carried out by means of an effective medium approach providing average components of the permittivity tensor and wave fields. Here, the edge effects of the metal-dielectric stratified nanotube for different combinations were thoroughly analyzed. We show how the boundary layers, which in principle remain fully irrelevant in the estimation of the effective permittivity of the nanotube, however play a critical role in the resonant scattering spectra and the near field patterns. A remarkable enhancement of the scattered wave field is unexpectedly experienced at the frequencies of interest when a dielectric layer is chosen to be in contact with the cavity core.
Journal of The Optical Society of America B-optical Physics | 2016
Mahin Naserpour; Carlos J. Zapata-Rodríguez; Carlos Díaz-Aviñó; Mahdieh Hashemi
We design plano–concave silicon lenses with coupled gradient-index plasmonic metacoatings for ultrawide apertured focusing utilizing a reduced region of ∼20λ2. The anomalous refraction induced in the planar input side of the lens and in the boundary of the wavelength-scale focal region boosts the curvature of the emerging wavefront, thus significantly enhancing the resolution of the tightly focused optical wave. The formation of a light tongue with dimensions approaching those of the concave opening is here evidenced. This scheme is expected to have potential applications in optical trapping and detection.
Journal of The Optical Society of America B-optical Physics | 2016
Carlos Díaz-Aviñó; David Pastor; Carlos J. Zapata-Rodríguez; Mahin Naserpour; Rafal Kotynski; Juan Jose Miret
Nonlocal effects in metal–dielectric (MD) periodic nanostructures may typically be observed when the plasmonic particles and gaps are on the scale of a few tens of nanometers, enabling under certain conditions (succinctly for epsilon near zero) a collimated beam to split into three refracted signals. We developed a method for precisely evaluating the categorized transmissivity in an air/trirefringent metamaterial interface, which uses a fast one-dimensional Fourier transform and finite element solvers of Maxwell’s equations. In periodic arrays of MD nanofilms, it is proved a tunable transmissivity switch of the multirefracted beams under varying angle of incidence and wavelength, while keeping reduced levels of reflectivity. Low-loss trirefringent nanomaterials may enable the development of ultracompact and tunable light splitters and modulators.
Plasmonics | 2017
Carlos Díaz-Avi nó; Mahin Naserpour; Carlos J. Zapata-Rodríguez
Engineered core-shell cylinders are good candidates for applications in invisibility and cloaking. In particular, hyperbolic nanotubes demonstrate tunable ultra-low scattering cross section in the visible spectral range. In this work, we investigate the limits of validity of the condition for invisibility, which was shown to rely on reaching an epsilon near zero in one of the components of the effective permittivity tensor of the anisotropic metamaterial cavity. For incident light polarized perpendicularly to the scatterer axis, critical deviations are found in low-birefringent arrangements and also with high-index cores. We suggest that the ability of anisotropic metallodielectric nanocavities to dramatically reduce the scattered light is associated with a multiple Fano-resonance phenomenon. We extensively explore such resonant effect to identify tunable windows of invisibility.
Optics Express | 2016
Carlos Díaz-Aviñó; Mahin Naserpour; Carlos J. Zapata-Rodríguez
An optimization for multilayered nanotubes that minimizes the scattering efficiency for a given polarization is derived. The cylindrical nanocavities have a radially periodic distribution, and the marginal layers that play a crucial role particularly in the presence of nonlocalities are disposed to reduce the scattering efficiency up to two orders of magnitude in comparison with previous proposals. The predominant causes leading to such invisibility effect are critically discussed.
Archive | 2017
Mahin Naserpour; Mahdieh Hashemi; Carlos J. Zapata-Rodríguez
In this chapter, a review of the recent advances in optical metalenses is presented, with special emphasis in their experimental implementation. First, the Huygens’ principle applied to ultrathin engineered metamaterials is introduced for the purpose of giving curvature to the wavefront of free-space wave fields. Primary designs based on metallic nanoslits and holey screens occasionally with variant width are first examined. Holographic plasmonic lenses are also explored offering a promising route to realize nanophotonic components. More recent metasurfaces based on nano-antenna resonators, either plasmonic or high-index dielectric, are analyzed in detail. Furthermore, 2D material lenses in the scale of a few nanometers enabling the thinnest lenses to date are here considered. Finally, dynamically reconfigurable focusing devices are reported for creating a scenario with new functionalities.
Optik | 2018
Hamid Pashaeiadl; Mahin Naserpour; Carlos J. Zapata-Rodríguez
Abstract In this paper, we explored the scattering behavior of thin cylinders made of a left-handed material (LHM) and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.