Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahmoud A. Ghannoum is active.

Publication


Featured researches published by Mahmoud A. Ghannoum.


Journal of Bacteriology | 2001

Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance

Jyotsna Chandra; Duncan M. Kuhn; Pranab K. Mukherjee; Lois L. Hoyer; Thomas S. McCormick; Mahmoud A. Ghannoum

Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.


Antimicrobial Agents and Chemotherapy | 2002

Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

Duncan M. Kuhn; T. George; Jyotsna Chandra; Pranab K. Mukherjee; Mahmoud A. Ghannoum

ABSTRACT Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P < 0.0005). CSLM analysis of planktonic and biofilm-associated blastospores showed treatment with VRC, Casp, and ABLC resulted in morphological alterations, which differed with each agent. In conclusion, our data show that Candida biofilms show unique susceptibilities to echinocandins and AMB lipid formulations.


Clinical Microbiology Reviews | 2000

Potential Role of Phospholipases in Virulence and Fungal Pathogenesis

Mahmoud A. Ghannoum

Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.


PLOS Pathogens | 2010

Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals

Mahmoud A. Ghannoum; Richard J. Jurevic; Pranab K. Mukherjee; Fan Cui; Masoumeh Sikaroodi; Ammar Naqvi; Patrick M. Gillevet

The oral microbiome–organisms residing in the oral cavity and their collective genome–are critical components of health and disease. The fungal component of the oral microbiota has not been characterized. In this study, we used a novel multitag pyrosequencing approach to characterize fungi present in the oral cavity of 20 healthy individuals, using the pan-fungal internal transcribed spacer (ITS) primers. Our results revealed the “basal” oral mycobiome profile of the enrolled individuals, and showed that across all the samples studied, the oral cavity contained 74 culturable and 11 non-culturable fungal genera. Among these genera, 39 were present in only one person, 16 genera were present in two participants, and 5 genera were present in three people, while 15 genera (including non-culturable organisms) were present in ≥4 (20%) participants. Candida species were the most frequent (isolated from 75% of participants), followed by Cladosporium (65%), Aureobasidium, Saccharomycetales (50% for both), Aspergillus (35%), Fusarium (30%), and Cryptococcus (20%). Four of these predominant genera are known to be pathogenic in humans. The low-abundance genera may represent environmental fungi present in the oral cavity and could simply be spores inhaled from the air or material ingested with food. Among the culturable genera, 61 were represented by one species each, while 13 genera comprised between 2 and 6 different species; the total number of species identified were 101. The number of species in the oral cavity of each individual ranged between 9 and 23. Principal component (PCO) analysis of the obtained data set followed by sample clustering and UniFrac analysis revealed that White males and Asian males clustered differently from each other, whereas both Asian and White females clustered together. This is the first study that identified the “basal mycobiome” of healthy individuals, and provides the basis for a detailed characterization of the oral mycobiome in health and disease.


Journal of Dental Research | 2001

Antifungal Resistance of Candidal Biofilms Formed on Denture Acrylic in vitro

Jyotsna Chandra; Pranab K. Mukherjee; S.D. Leidich; Fady Faddoul; Lois L. Hoyer; L.J. Douglas; Mahmoud A. Ghannoum

Denture biofilms represent a protective reservoir for oral microbes. The study of the biology of Candida in these biofilms requires a reliable model. A reproducible model of C. albicans denture biofilm was developed and used to determine the susceptibility of two clinically relevant C. albicans isolates against 4 antifungals. C. albicans, growing as a biofilm, exhibited resistance to amphotericin B, nystatin, chlorhexidine, and fluconazole, with 50% reduction in metabolic activity (50% RMA) at concentrations of 8, 16, 128, and > 64 μg/mL, respectively. In contrast, planktonically cultured C. albicans were susceptible (50% RMA for the same antifungals was obtained at 0.25, 1.0, 4.0, and 0.5 μg/mL, respectively). In conclusion, results obtained by means of our biofilm model show that biofilm-associated C. albicans cells, compared with cells grown in planktonic form, are resistant to antifungals used to treat denture stomatitis.


Clinical Microbiology Reviews | 2001

Antifungal Susceptibility Testing: Practical Aspects and Current Challenges

John H. Rex; Michael A. Pfaller; Thomas J. Walsh; Vishnu Chaturvedi; Ana Espinel-Ingroff; Mahmoud A. Ghannoum; Linda L. Gosey; Frank C. Odds; Michael G. Rinaldi; Daniel J. Sheehan; David W. Warnock

SUMMARY Development of standardized antifungal susceptibility testing methods has been the focus of intensive research for the last 15 years. Reference methods for yeasts (NCCLS M27-A) and molds (M38-P) are now available. The development of these methods provides researchers not only with standardized methods for testing but also with an understanding of the variables that affect interlaboratory reproducibility. With this knowledge, we have now moved into the phase of (i) demonstrating the clinical value (or lack thereof) of standardized methods, (ii) developing modifications to these reference methods that address specific problems, and (iii) developing reliable commercial test kits. Clinically relevant testing is now available for selected fungi and drugs: Candida spp. against fluconazole, itraconazole, flucytosine, and (perhaps) amphotericin B; Cryptococcus neoformans against (perhaps) fluconazole and amphotericin B; and Aspergillus spp. against (perhaps) itraconazole. Expanding the range of useful testing procedures is the current focus of research in this area.


Infection and Immunity | 2002

Comparison of Biofilms Formed by Candida albicans and Candida parapsilosis on Bioprosthetic Surfaces

Duncan M. Kuhn; Jyotsna Chandra; Pranab K. Mukherjee; Mahmoud A. Ghannoum

ABSTRACT Little is known about fungal biofilms, which may cause infection and antibiotic resistance. In this study, biofilm formation by different Candida species, particularly Candidaalbicans and C. parapsilosis, was evaluated by using a clinically relevant model of Candida biofilm on medical devices. Candida biofilms were allowed to form on silicone elastomer and were quantified by tetrazolium (XTT) and dry weight (DW) assays. Formed biofilm was visualized by using fluorescence microscopy and confocal scanning laser microscopy with Calcofluor White (Sigma Chemical Co., St. Louis, Mo.), concanavalin A-Alexafluor 488 (Molecular Probes, Eugene, Oreg.), and FUN-1 (Molecular Probes) dyes. Although minimal variations in biofilm production among invasive C. albicans isolates were seen, significant differences between invasive and noninvasive isolates (P < 0.001) were noted. C. albicans isolates produced more biofilm than C. parapsilosis, C. glabrata, and C. tropicalis isolates, as determined by DW assays (P was <0.001 for all comparisons) and microscopy. Interestingly, noninvasive isolates demonstrated a higher level of XTT activity than invasive isolates. On microscopy, C. albicans biofilms had a morphology different from that of other species, consisting of a basal blastospore layer with a dense overlying matrix composed of exopolysaccharides and hyphae. In contrast, C. parapsilosis biofilms had less volume than C. albicans biofilms and were comprised exclusively of clumped blastospores. Unlike planktonically grown cells, Candida biofilms rapidly (within 6 h) developed fluconazole resistance (MIC, >128 μg/ml). Importantly, XTT and FUN-1 activity showed biofilm cells to be metabolically active. In conclusion, our data show that C. albicans produces quantitatively larger and qualitatively more complex biofilms than other species, in particular, C. parapsilosis.


Infection and Immunity | 2003

Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols

Pranab K. Mukherjee; Jyotsna Chandra; Duncan M. Kuhn; Mahmoud A. Ghannoum

ABSTRACT Candida albicans biofilms are formed through three distinct developmental phases and are associated with high fluconazole (FLU) resistance. In the present study, we used a set of isogenic Candida strains lacking one or more of the drug efflux pumps Cdr1p, Cdr2p, and Mdr1p to determine their role in FLU resistance of biofilms. Additionally, variation in sterol profile as a possible mechanism of drug resistance was investigated. Our results indicate that parent and mutant strains formed similar biofilms. However, biofilms formed by double and triple mutants were more susceptible to FLU at 6 h (MIC = 64 and 16 μg/ml, respectively) than the wild-type strain (MIC > 256 μg/ml). At later time points (12 and 48 h), all the strains became resistant to this azole (MIC ≥ 256 μg/ml), indicating lack of involvement of efflux pumps in resistance at late stages of biofilm formation. Northern blot analyses revealed that Candida biofilms expressed CDR and MDR1 genes in all the developmental phases, while planktonic cells expressed these genes only at the 12- and 48-h time points. Functionality of efflux pumps was assayed by rhodamine (Rh123) efflux assays, which revealed significant differences in Rh123 retention between biofilm and planktonic cells at the early phase (P = 0.0006) but not at later stages (12 and 48 h). Sterol analyses showed that ergosterol levels were significantly decreased (P < 0.001) at intermediate and mature phases, compared to those in early-phase biofilms. These studies suggest that multicomponent, phase-specific mechanisms are operative in antifungal resistance of fungal biofilms.


Molecular Microbiology | 2001

Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans

Gary M. Cox; Henry C. McDade; Sharon C.-A. Chen; Stephanie C. Tucker; Magnus Gottfredsson; Lesley C. Wright; Tania C. Sorrell; Steven D. Leidich; Arturo Casadevall; Mahmoud A. Ghannoum; John R. Perfect

The human pathogenic fungus Cryptococcus neoformans secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), lysophospholipase hydrolase and lysophospholipase transacylase activities. This enzyme has been postulated to be a cryptococcal virulence factor. We cloned a phospholipase‐encoding gene (PLB1) from C. neoformans and constructed plb1 mutants using targeted gene disruption. All three enzyme activities were markedly reduced in the mutants compared with the wild‐type parent. The plb1 strains did not have any defects in the known cryptococcal virulence phenotypes of growth at 37°C, capsule formation, laccase activity and urease activity. The plb1 strains were reconstituted using the wild‐type locus and this resulted in restoration of all extracellular PLB activities. In vivo testing demonstrated that the plb1 strain was significantly less virulent than the control strains in both the mouse inhalational model and the rabbit meningitis model. We also found that the plb1 strain exhibited a growth defect in a macrophage‐like cell line. These data demonstrate that secretory phospholipase is a virulence factor for C. neoformans.


European Journal of Clinical Microbiology & Infectious Diseases | 2006

Zygomycosis: the re-emerging fungal infection

M. Chayakulkeeree; Mahmoud A. Ghannoum; John R. Perfect

Invasive fungal infections are major medical complications in immunocompromised patients. The recent rise in the incidence of cancer and the increased use of newer medical treatment modalities, including organ transplantations, have resulted in growing numbers of highly immunosuppressed individuals. Although aspergillosis and candidiasis are among the most common invasive mycoses in such patients, there is evidence that the incidence of infectious diseases caused by Zygomycetes has risen significantly over the past decade. Patients with diabetes, malignancies, solid organ or bone marrow transplants, or iron overload and those receiving immunosuppressive agents, deferoxamine therapy, or broad-spectrum antimicrobial drugs are at highest risk for zygomycosis. This review details the emergence and importance of zygomycosis in current clinical practice and its manifestations and management. The etiologic species, pathogenesis and risk factors for zygomycosis are reviewed and updated. The clinical spectrum of zygomycosis is now broader, and it can be difficult to distinguish between mucormycosis and enthomophthoramycosis, both of which can manifest as disease ranging from a superficial infection to an angioinvasive infection with high mortality. Finally, the three-part treatment strategy (antifungal drugs, surgery, control of underlying diseases) is reviewed. Lipid formulations of amphotericin B are the antifungal agents of choice for treatment of zygomycosis. A novel antifungal triazole, posaconazole, has been developed and may become approved for treatment of zygomycosis. The clinical experience with adjunctive treatments like colony-stimulating factors, interferon-gamma, and hyperbaric oxygen therapy is still limited.

Collaboration


Dive into the Mahmoud A. Ghannoum's collaboration.

Top Co-Authors

Avatar

Pranab K. Mukherjee

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jyotsna Chandra

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

N. Isham

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Lisa Long

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ana Espinel-Ingroff

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Mauricio Retuerto

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vishnu Chaturvedi

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge