Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahmoud Alhosin is active.

Publication


Featured researches published by Mahmoud Alhosin.


European Journal of Cancer | 2010

Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1

Tanveer Sharif; Cyril Auger; Mahmoud Alhosin; Claudine Ebel; Mayada Achour; Nelly Etienne-Selloum; Guy Fuhrmann; Christian Bronner; Valérie B. Schini-Kerth

Several epidemiological studies suggest that a diet rich in fruits and vegetables, which contain high levels of polyphenols, is associated with a reduced risk of cancer. The aim of the present study was to determine whether a red wine polyphenolic extract (RWPs, a rich source of polyphenols; 2.9g/L) affects the proliferation of human lymphoblastic leukaemia cells (Jurkat cells) and, if so, to determine the underlying mechanism. Cell proliferation and viability were determined by the MTS and trypan blue exclusion assays, respectively. Cell cycle analysis, apoptosis activity and oxidative stress levels were assessed by flow cytometry, and the expression of p73, UHRF1 and active caspase-3 by Western blot analysis. RWPs inhibited the proliferation of Jurkat cells and induced G0/G1 cell cycle arrest in a concentration-dependent manner. Moreover, RWPs triggered apoptosis, which is associated with an increased expression level of the pro-apoptotic protein p73 and the active caspase-3. RWPs induced apoptosis confirmed by DNA fragmentation analysis, and this effect was associated with down-regulation of the antiapoptotic protein UHRF1. Furthermore RWPs significantly increased the formation of reactive oxygen species (ROS). Intracellular scavengers of superoxide anions (MnTMPyP, MnTBAP, PEG-SOD) prevented the RWPs-induced formation of ROS and apoptosis, while native extracellular superoxide dismutase (SOD) was without effect. In addition, the effect of RWPs on the expression levels of p73, active caspase-3 and UHRF1 was also prevented by MnTMPyP. Thus, these findings indicate that RWPs induce apoptosis in Jurkat cells by a redox-sensitive mechanism involving the intracellular formation of superoxide anions and consequently the up-regulation of p73 and down-regulation of UHRF1.


Biochemical and Biophysical Research Communications | 2009

UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity

Mayada Achour; Guy Fuhrmann; Mahmoud Alhosin; Philippe Rondé; Thierry Chataigneau; Marc Mousli; Valérie B. Schini-Kerth; Christian Bronner

Tat-interactive protein, 60kDa (Tip60) is a histone acetyltransferase with specificity toward lysine 5 of histone H2A (H2AK5) and plays multiple roles in chromatin remodeling processes. Co-immunoprecipitation experiments performed on Jurkat cells, showed that Tip60 is present in the same macro-molecular complex as UHRF1 (Ubiquitin-like containing PHD and RING domain 1), DNMT1 (DNA methyltransferase 1), and HDAC1 (histone deacetylase 1). Furthermore, immunocytochemistry experiments confirmed that Tip60 co-localizes with the UHRF1/DNMT1 complex. Although down-regulation of UHRF1 by RNA interference enhanced Tip60 expression, a significant decrease of the level of acetylated H2AK5 was observed. Consistently, we have observed that down-regulation of Tip60 and DNMT1 by RNA interference, dramatically reduced the levels of acetylated H2AK5. Altogether, these results suggest that Tip60 is a novel partner of the epigenetic integration platform interplayed by UHRF1, DNMT1 and HDAC1 involved in the epigenetic code replication.


Cellular Signalling | 2011

Down-regulation of cyclic nucleotide phosphodiesterase PDE1A is the key event of p73 and UHRF1 deregulation in thymoquinone-induced acute lymphoblastic leukemia cell apoptosis.

Abdurazzag Abusnina; Mahmoud Alhosin; Thérèse Keravis; Christian D. Muller; Guy Fuhrmann; Christian Bronner; Claire Lugnier

Thymoquinone (TQ), the active principle of Nigella sativa black seeds, has anti-proliferative properties on numerous cancer cell types. Others and we have previously reported that TQ acts as agent that triggers cell cycle arrest and apoptosis through either a p53- or p73-dependent pathway. However, the immediate targets recruited upon TQ-induced cytotoxicity have not yet been clearly identified. We therefore asked whether cyclic nucleotide phosphodiesterases (PDEs) could be involved in TQ-triggered pro-apoptotic reactivity; PDEs are regulators of intracellular levels of cyclic nucleotides and therefore can modulate cAMP and cGMP-dependent cell death pathways. Our results showed that TQ specifically repressed PDE1A expression in the acute lymphoblastic leukemia Jurkat cell line. This effect is concomitant with the previously described sequential deregulation of the expression of the tumor suppressor protein p73 and the epigenetic integrator UHRF1 (Ubiquitin-like, PHD Ring Finger 1). Interestingly, RNA-interference knock-down of PDE1A expression as well as decreased PDE1A expression induced growth inhibition of Jurkat cells, cell cycle arrest and apoptosis through an activation of p73 and a repression of UHRF1. Conversely, PDE1A re-expression counteracted the cellular pro-apoptotic effects of TQ in association with a p73 repression and UHRF1 re-expression. Altogether, our results show that TQ induced an initial down-regulation of PDE1A with a subsequent down-regulation of UHRF1 via a p73-dependent mechanism. This study further proposes that PDE1A might be involved in the epigenetic code inheritance by regulating, via p73, the epigenetic integrator UHRF1. Our findings also suggest that a forced inhibition of PDE1A expression might be a new therapeutic strategy for the management of acute lymphoblastic leukemia.


Journal of Experimental & Clinical Cancer Research | 2013

Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation

Mounira Krifa; Mahmoud Alhosin; Christian D. Muller; Jean-Pierre Gies; Leila Chekir-Ghedira; Kamel Ghedira; Yves Mély; Christian Bronner; Marc Mousli

Several reports have described the potential effects of natural compounds as anti-cancer agents in vitro as well as in vivo. The aim of this study was to evaluate the anti-cancer effect of Limoniastrum guyonianum aqueous gall extract (G extract) and luteolin in the human cervical cancer HeLa cell line, and, if so, to clarify the underlying mechanism. Our results show that G extract and luteolin inhibited cell proliferation and induced G2/M cell cycle arrest in a concentration and time-dependent manner. Both natural products induced programmed cell death as confirmed by the presence of hypodiploid G0/G1 cells. These effects are associated with an up-regulation of the expression of the tumor suppressor gene p16INK4A and a down-regulation of the expression of the anti-apoptotic actor UHRF1 and its main partner DNMT1. Moreover, G extract- and luteolin-induced UHRF1 and DNMT1 down-regulation is accompanied with a global DNA hypomethylation in HeLa cell line. Altogether our results show that G extract mediates its growth inhibitory effects on human cervical cancer HeLa cell line likely via the activation of a p16INK4A -dependent cell cycle checkpoint signalling pathway orchestrated by UHRF1 and DNMT1 down-regulation.


PLOS ONE | 2012

Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

Tanveer Sharif; Mahmoud Alhosin; Cyril Auger; Carole Minker; Jong-Hun Kim; Nelly Etienne-Selloum; Pierre Bories; Hinrich Gronemeyer; Annelise Lobstein; Christian Bronner; Guy Fuhrmann; Valérie B. Schini-Kerth

Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G2/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.


Biochemical and Biophysical Research Communications | 2012

Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1.

Mayada Achour; Marc Mousli; Mahmoud Alhosin; Abdulkhaleg Ibrahim; Jean Peluso; Christian D. Muller; Valérie B. Schini-Kerth; Ali Hamiche; Sirano Dhe-Paganon; Christian Bronner

Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) contributes to silencing of tumor suppressor genes by recruiting DNA methyltransferase 1 (DNMT1) to their hemi-methylated promoters. Conversely, demethylation of these promoters has been ascribed to the natural anti-cancer drug, epigallocatechin-3-gallate (EGCG). The aim of the present study was to investigate whether the UHRF1/DNMT1 pair is an important target of EGCG action. Here, we show that EGCG down-regulates UHRF1 and DNMT1 expression in Jurkat cells, with subsequent up-regulation of p73 and p16(INK4A) genes. The down-regulation of UHRF1 is dependent upon the generation of reactive oxygen species by EGCG. Up-regulation of p16(INK4A) is strongly correlated with decreased promoter binding by UHRF1. UHRF1 over-expression counteracted EGCG-induced G1-arrested cells, apoptosis, and up-regulation of p16(INK4A) and p73. Mutants of the Set and Ring Associated (SRA) domain of UHRF1 were unable to down-regulate p16(INK4A) and p73, either in the presence or absence of EGCG. Our results show that down-regulation of UHRF1 is upstream to many cellular events, including G1 cell arrest, up-regulation of tumor suppressor genes and apoptosis.


Investigational New Drugs | 2011

Selective proapoptotic activity of polyphenols from red wine on teratocarcinoma cell, a model of cancer stem-like cell

Tanveer Sharif; Cyril Auger; Christian Bronner; Mahmoud Alhosin; Thibaut Klein; Nelly Etienne-Selloum; Valérie B. Schini-Kerth; Guy Fuhrmann

SummaryCancer stem cells are expected to be responsible for tumor initiation and metastasis. These cells are therefore potential targets for innovative anticancer therapies. However, the absence of bona fide cancer stem cell lines is a real problem for the development of such approaches. Since teratocarcinoma cells are totipotent stem cells with a high degree of malignancy, we used them as a model of cancer stem cells in order to evaluate the anticancer chemopreventive activity of red wine polyphenols (RWPs) and to determine the underlying cellular and molecular mechanisms. We therefore investigated the effects of RWPs on the embryonal carcinoma (EC) cell line P19 which was grown in the same culture conditions as the most appropriate normal cell line counterpart, the pluripotent embryonic fibroblast cell line NIH/3T3. The present study indicates that RWPs selectively inhibited the proliferation of P19 EC cells and induced G1 cell cycle arrest in a dose-dependent manner. Moreover, RWPs treatment specifically triggered apoptosis of P19 EC cells in association with a dramatic upregulation of the tumor suppressor gene p53 and caspase-3 activation. Our findings suggest that the chemopreventive activity of RWPs on tumor initiation and development is related to a growth inhibition and a p53-dependent induction of apoptosis in teratocarcinoma cells. In addition, this study also shows that the EC cell line is a convenient source for studying the responses of cancer stem cells to new potential anticancer agents.


Investigational New Drugs | 2012

Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts

Mahmoud Alhosin; Abdulkhaleg Ibrahim; Abdelaziz Boukhari; Tanveer Sharif; Jean-Pierre Gies; Cyril Auger; Valérie B. Schini-Kerth

SummaryThe microtubule-targeting agents derived from natural products, such as vinca-alkaloids and taxanes are an important family of efficient anti-cancer drugs with therapeutic benefits in both haematological and solid tumors. These drugs interfere with the assembly of microtubules of α/β tubulin heterodimers without altering their expression level. The aim of the present study was to investigate the effect of thymoquinone (TQ), a natural product present in black cumin seed oil known to exhibit putative anti-cancer activities, on α/β tubulin expression in human astrocytoma cells (cell line U87, solid tumor model) and in Jurkat cells (T lymphoblastic leukaemia cells). TQ induced a concentration- and time-dependent degradation of α/β tubulin in both cancer cell types. This degradation was associated with the up-regulation of the tumor suppressor p73 with subsequent induction of apoptosis. Interestingly, TQ had no effect on α/β tubulin protein expression in normal human fibroblast cells, which were used as a non-cancerous cell model. These data indicate that TQ exerts a selective effect towards α/β tubulin in cancer cells. In conclusion, the present findings indicate that TQ is a novel anti-microtubule drug which targets the level of α/β tubulin proteins in cancer cells. Furthermore, they highlight the interest of developing anti-cancer therapies that target directly tubulin rather than microtubules dynamics.


PLOS ONE | 2014

Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

Faraj Zgheel; Mahmoud Alhosin; Sherzad Rashid; Mélanie Burban; Cyril Auger; Valérie B. Schini-Kerth

Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.


Scientific Reports | 2015

Bilberry extract (Antho 50) selectively induces redox-sensitive caspase 3-related apoptosis in chronic lymphocytic leukemia cells by targeting the Bcl-2/Bad pathway

Mahmoud Alhosin; Antonio J. León-González; Israa Dandache; Agnès Lelay; Sherzad Rashid; Claire Kevers; Joël Pincemail; Luc-Matthieu Fornecker; Laurent Mauvieux; Raoul Herbrecht; Valérie B. Schini-Kerth

Defect in apoptosis has been implicated as a major cause of resistance to chemotherapy observed in B cell chronic lymphocytic leukaemia (B CLL). This study evaluated the pro-apoptotic effect of an anthocyanin-rich dietary bilberry extract (Antho 50) on B CLL cells from 30 patients and on peripheral blood mononuclear cells (PBMCs) from healthy subjects, and determined the underlying mechanism. Antho 50 induced concentration- and time-dependent pro-apoptotic effects in B CLL cells but little or no effect in PBMCs. Among the main phenolic compounds of the bilberry extract, delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside induced a pro-apoptotic effect. Antho 50-induced apoptosis is associated with activation of caspase 3, down-regulation of UHRF1, a rapid dephosphorylation of Akt and Bad, and down-regulation of Bcl-2. Antho 50 significantly induced PEG-catalase-sensitive formation of reactive oxygen species in B CLL cells. PEG-catalase prevented the Antho 50-induced induction of apoptosis and related signaling. The present findings indicate that Antho 50 exhibits strong pro-apoptotic activity through redox-sensitive caspase 3 activation-related mechanism in B CLL cells involving dysregulation of the Bad/Bcl-2 pathway. This activity of Antho 50 involves the glucoside and rutinoside derivatives of delphinidin. They further suggest that Antho 50 has chemotherapeutic potential by targeting selectively B CLL cells.

Collaboration


Dive into the Mahmoud Alhosin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril Auger

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Tanveer Sharif

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Guy Fuhrmann

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Marc Mousli

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherzad Rashid

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Mély

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge