Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahmoud I. Hussein is active.

Publication


Featured researches published by Mahmoud I. Hussein.


Journal of Sound and Vibration | 2006

Dispersive elastodynamics of 1D banded materials and structures : analysis

Mahmoud I. Hussein; Gregory M. Hulbert; Richard A. Scott

Abstract The elastodynamics of 1D periodic materials and finite structures comprising these materials are studied with particular emphasis on correlating their frequency-dependent characteristics and on elucidating their pass-band and stop-band behaviors. Dispersion relations are derived for periodic materials and are employed in a novel manner for computing both pass-band and stop-band complex mode shapes. Through simulations of harmonically induced wave motion within a finite number of unit cells, conformity of the frequency band structure between infinite and finite periodic systems is shown. In particular, only one or two unit cells of a periodic material could be sufficient for “frequency bandedness” to carry over from the infinite periodic case, and only three to four unit cells are necessary for the decay in normalized transmission within a stop band to practically saturate with an increase in the number of cells. Dominant speeds in the scattered wave field within the same finite set of unit cells are observed to match those of phase and group velocities of the infinite periodic material within the most active pass band. Dynamic response due to impulse excitation also is shown to capture the infinite periodic material dynamical characteristics. Finally, steady-state vibration analyses are conducted on a finite fully periodic structure revealing a conformity in the natural frequency spread to the frequency band layout of the infinite periodic material. The steady-state forced response is observed to exhibit mode localization patterns that resemble those of the infinite periodic medium, and it is shown that the maximum localized response under stop-band conditions could be significantly less than in an equivalent homogenous structure and the converse is true for pass-band conditions.


Physical Review E | 2011

Ultrawide phononic band gap for combined in-plane and out-of-plane waves.

Osama R. Bilal; Mahmoud I. Hussein

We consider two-dimensional phononic crystals formed from silicon and voids, and present optimized unit-cell designs for (1) out-of-plane, (2) in-plane, and (3) combined out-of-plane and in-plane elastic wave propagation. To feasibly search through an excessively large design space (~10(40) possible realizations) we develop a specialized genetic algorithm and utilize it in conjunction with the reduced Bloch mode expansion method for fast band-structure calculations. Focusing on high-symmetry plain-strain square lattices, we report unit-cell designs exhibiting record values of normalized band-gap size for all three categories. For the case of combined polarizations, we reveal a design with a normalized band-gap size exceeding 60%.


arXiv: Computational Physics | 2009

Reduced Bloch mode expansion for periodic media band structure calculations

Mahmoud I. Hussein

Reduced Bloch mode expansion (RBME) is presented for fast periodic media band structure calculations. The expansion employs a natural basis composed of a selected reduced set of Bloch eigenfunctions. The reduced basis is selected within the irreducible Brillouin zone at high symmetry points determined by the medium’s crystal structure and group theory (and possibly at additional related points). At each of the reciprocal lattice selection points, a number of Bloch eigenfunctions are selected up to the frequency/energy range of interest for the band structure calculations. As it is common to initially discretize the periodic unit cell and solution field using some choice of basis, RBME is practically a secondary expansion that uses a selected set of Bloch eigenvectors. Such expansion therefore keeps, and builds on, any favourable attributes a primary expansion approach might exhibit. Being in line with the well-known concept of modal analysis, the proposed approach maintains accuracy while reducing the computation time by up to two orders of magnitudes or more depending on the size and extent of the calculations. Results are presented for phononic, photonic and electronic band structures.


Physical Review Letters | 2014

Nanophononic metamaterial: thermal conductivity reduction by local resonance.

Bruce L. Davis; Mahmoud I. Hussein

We present the concept of a locally resonant nanophononic metamaterial for thermoelectric energy conversion. Our configuration, which is based on a silicon thin film with a periodic array of pillars erected on one or two of the free surfaces, qualitatively alters the base thin-film phonon spectrum due to a hybridization mechanism between the pillar local resonances and the underlying atomic lattice dispersion. Using an experimentally fitted lattice-dynamics-based model, we conservatively predict the metamaterial thermal conductivity to be as low as 50% of the corresponding uniform thin-film value despite the fact that the pillars add more phonon modes to the spectrum.


Journal of Sound and Vibration | 2013

Metadamping: An emergent phenomenon in dissipative metamaterials

Mahmoud I. Hussein; Michael J. Frazier

Abstract Using a generalized form of Blochs theorem, we derive the dispersion relation of a viscously damped locally resonant metamaterial modeled as an infinite mass-in-mass lumped parameter chain. For comparison, we obtain the dispersion relation for a statically equivalent Bragg-scattering mass-spring chain that is also viscously damped. For the two chains, we prescribe identical damping levels in the dashpots and compare the damping ratio associated with all propagating Bloch modes. We find that the locally resonant metamaterial exhibits higher dissipation throughout the spectrum which indicates a damping emergence phenomena due to the presence of local resonance. This phenomenon, which we define as “metadamping”, provides a new paradigm for the design of material systems that display both high damping and high stiffness. We conclude our investigation by quantifying the degree of metadamping as a function of the long-wave speed of sound in the medium or the static stiffness.


Journal of Applied Physics | 2010

Band structure of phononic crystals with general damping

Mahmoud I. Hussein; Michael J. Frazier

In this paper, we present theoretical formalisms for the study of wave dispersion in damped elastic periodic materials. We adopt the well known structural dynamics techniques of modal analysis and state-space transformation and formulate them for the Bloch wave propagation problem. First, we consider a one-dimensional lumped parameter model of a phononic crystal consisting of two masses in the unit cell whereby the masses are connected by springs and dashpot viscous dampers. We then extend our analysis to the study of a two-dimensional phononic crystal, modeled as a dissipative elastic continuum, and consisting of a periodic arrangement of square inclusions distributed in a matrix base material. For our damping model, we consider both proportional damping and general damping. Our results demonstrate the effects of damping on the frequency band structure for various types and levels of damping. In particular, we reveal two intriguing phenomena: branch overtaking and branch cut-off. The former may result in...


Applied Physics Letters | 2013

Trampoline metamaterial: Local resonance enhancement by springboards

Osama R. Bilal; Mahmoud I. Hussein

We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.


Waves in Random and Complex Media | 2007

Optimal synthesis of 2D phononic crystals for broadband frequency isolation

Mahmoud I. Hussein; Karim Hamza; Gregory M. Hulbert; Kazuhiro Saitou

The spatial distribution of material phases within a periodic composite can be engineered to produce band gaps in its frequency spectrum. Applications for such composite materials include vibration and sound isolation. Previous research focused on utilizing topology optimization techniques to design two-dimensional (2D) periodic materials with a maximized band gap around a particular frequency or between two particular dispersion branches. While sizable band gaps can be realized, the possibility remains that the frequency bandwidth of the load that is to be isolated might exceed the size of the band gap. In this paper, genetic algorithms are used to design squared bi-material unit cells with a maximized sum of band-gap widths, with or without normalization relative to the central frequency of each band gap, over a prescribed total frequency range of interest. The optimized unit cells therefore exhibit broadband frequency isolation characteristics. The effects of the ratios of contrasting material properties are also studied. The designed cells are subsequently used, with varying levels of material damping, to form a finite vibration isolation structure, which is subjected to broadband loading conditions. Excellent isolation properties of the synthesized material are demonstrated for this structure.


Physical Review B | 2006

Phonon band structure and thermal transport correlation in a layered diatomic crystal

Alan J. H. McGaughey; Mahmoud I. Hussein; E. S. Landry; Massoud Kaviany; Gregory M. Hulbert

To elucidate the three-way relationship among a crystal’s structure, its phonon dispersion characteristics, and its thermal conductivity, an analysis is conducted on layered diatomic Lennard-Jones crystals with various mass ratios. Lattice dynamics theory and molecular dynamics simulations are used to predict the phonon dispersion curves and the thermal conductivity. The layered structure generates directionally dependent thermal conductivities lower than those predicted by density trends alone. The dispersion characteristics are quantified using a set of band diagram metrics, which are used to assess the contributions of acoustic phonons and optical phonons to the thermal conductivity. The thermal conductivity increases as the extent of the acoustic modes increases, and it decreases as the extent of the stop bands increases. The sensitivity of the thermal conductivity to the band diagram metrics is highest at low temperatures, where there is less anharmonic scattering, indicating that dispersion plays a more prominent role in thermal transport in that regime. We propose that the dispersion metrics i provide an indirect measure of the relative contributions of dispersion and anharmonic scattering to the thermal transport, and ii uncouple the standard thermal conductivity structure-property relation to that of structure-dispersion and dispersion-property relations, providing opportunities for better understanding of the underlying physical mechanisms and a potential tool for material design.


AIP Advances | 2014

Dispersion characteristics of a nonlinear elastic metamaterial

Romik Khajehtourian; Mahmoud I. Hussein

We study wave dispersion in a one-dimensional nonlinear elastic metamaterial consisting of a thin rod with periodically attached local resonators. Our model is based on an exact finite-strain dispersion relation for a homogeneous solid, utilized in conjunction with the standard transfer matrix method for a periodic medium. The nonlinearity considered stems from large elastic deformation in the thin rod, whereas the metamaterial behavior is associated with the dynamics of the local resonators. We derive an approximate dispersion relation for this system and provide an analytical prediction of band-gap characteristics. The results demonstrate the effect of the nonlinearity on the characteristics of the band structure, including the size, location, and character of the band gaps. For example, large deformation alone may cause a pair of isolated Bragg-scattering and local-resonance band gaps to coalesce. We show that for a wave amplitude on the order of one-eighth of the unit cell size, the effect of the nonlinearity in the structure considered is no longer negligible when the unit-cell size is one-fourteenth of the wavelength or larger.

Collaboration


Dive into the Mahmoud I. Hussein's collaboration.

Top Co-Authors

Avatar

Osama R. Bilal

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Bruce L. Davis

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael J. Frazier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitri Krattiger

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

E. S. Landry

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Hossein Honarvar

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ihab El-Kady

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge