Mahmoud Zaki El-Readi
Al-Azhar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahmoud Zaki El-Readi.
European Journal of Pharmacology | 2010
Mahmoud Zaki El-Readi; Dalia Hamdan; Nawal Farrag; Assem El-Shazly; Michael Wink
P-glycoprotein (P-gp), a membrane transporter encoded by the MDR1 gene in human cells, mediates drug efflux from cells and plays a major role in causing multidrug resistance; which is one of the most accepted mechanisms for failure of chemotherapy in cancer treatment. In this study, we investigated the effects of nine naturally occurring compounds isolated from Citrus jambhiri Lush and Citrus pyriformis Hassk (Rutaceae) for their potential to modulate the activity of P-gp in the multidrug-resistant human leukaemia cell line CEM/ADR5000. Limonin, deacetylnomilin, hesperidin, neohesperidin, stigmasterol and ss-sitosterol-O-glucoside inhibited the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Some of these compounds were more active than verapamil, which was used as a positive control. Treatment of drug-resistant Caco-2 cells with the most active C. jambhiri and C. pyriformis compounds increased their sensitivity to doxorubicin and completely reversed doxorubicin resistance, which agrees with a decreased P-gp activity. Limonin was the most potent P-glycoprotein inhibitor - when it was applied at a non-toxic concentration of 20 microM, it significantly enhanced doxorubicin cytotoxicity 2.98-fold (P<0.001) and 2.2-fold (P<0.001) in Caco2 and CEM/ADR5000 cells, respectively. These isolated Citrus compounds could be considered as good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents.
Frontiers in Microbiology | 2012
Michael Wink; Mohamed L. Ashour; Mahmoud Zaki El-Readi
Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.
Journal of Pharmacy and Pharmacology | 2009
Mohamed L. Ashour; Mahmoud Zaki El-Readi; Mahmoud Youns; Sri Mulyaningsih; Frank Sporer; Thomas Efferth; Michael Wink
Objectives Bupleurum marginatum is a herb indigenous to the southern and southwestern part of China. It is widely used in many Chinese prescriptions. We aimed to investigate the chemical composition, antioxidant, anti‐inflammatory, antimicrobial and in‐vitro cytotoxic activity of the hydrodistilled and extracted essential oil from B. marginatum to validate some of its ethnopharmacologial uses.
Journal of Pharmacy and Pharmacology | 2010
Sri Mulyaningsih; Mahmoud Youns; Mahmoud Zaki El-Readi; Mohamed L. Ashour; Endalkachew Nibret; Frank Sporer; Florian Herrmann; Jürgen Reichling; Michael Wink
Objectives The aim was to determine the chemical composition of the essential oil of Kadsura longipedunculata and the biological activity of the oil and its major components.
Journal of Pharmacy and Pharmacology | 2011
N. Z. Mamadalieva; Florian Herrmann; Mahmoud Zaki El-Readi; Ahmad Tahrani; Razan Hamoud; Dilfuza Egamberdieva; Shahnoz S. Azimova; Michael Wink
Objectives The aim of this study was to investigate the flavonoid composition of Scutellaria immaculata and S. ramosissima (Lamiaceae) and the in‐vitro biological activity of their extracts and flavonoids.
Phytomedicine | 2012
Safaa Yehia Eid; Mahmoud Zaki El-Readi; Michael Wink
We determined the ability of some phytochemicals, including alkaloids (glaucine, harmine, and sanguinarine), phenolics (EGCG and thymol), and terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), alone or in combination with the saponin digitonin to reverse the relative multi-drug resistance of Caco-2 and CEM/ADR5000 cells to the chemotherapeutical agent doxorubicin. The IC(50) of doxorubicin in Caco-2 and CEM/ADR5000 was 4.22 and 44.08μM, respectively. Combination of non-toxic concentrations of individual secondary metabolite with doxorubicin synergistically sensitized Caco-2 and CEM/ADR5000 cells, and significantly enhanced the cytotoxicity of doxorubicin. Furthermore, three-drug combinations (secondary metabolite+digitonin+doxorubicin) were even more powerful. The best synergist was the benzophenanthridine alkaloid sanguinarine. It reduced the IC(50) value of doxorubicin 17.58-fold in two-drug combinations (sanguinarine+doxorubicin) and even 35.17-fold in three-drug combinations (sanguinarine+digitonin+doxorubicin) in Caco-2 cells. Thus synergistic drug combinations offer the possibility to enhance doxorubicin efficacy in chemotherapy.
Phytomedicine | 2012
Safaa Yehia Eid; Mahmoud Zaki El-Readi; Michael Wink
Proteins of the ATP-binding cassette superfamily, mainly P-glycoprotein (P-gp; MDR1), play an important role in the development of multidrug resistance (MDR) in cancer cells and thus in the potential failure of chemotherapy. A selection of carotenoids (β-carotene, crocin, retinoic acid, canthaxanthin, and fucoxanthin) was investigated whether they are substrates of P-gp, and if they can reverse MDR in resistant Caco-2 and CEM/ADR5000 cells as compared to the sensitive parent cell line CCRF-CEM. The activity of ABC transporter was determined in resistant and sensitive cells by spectrofluorometry and flow cytometry using the substrates doxorubicin, rhodamine 123, and calcein as fluorescent probes. The carotenoids increased accumulation of these P-gp substrates in a dose-dependent manner indicating that they themselves also function as substrates. Fucoxanthin and canthaxanthin (50-100 μM) produced a 3-5-fold higher retention of the fluorescent probes than the known competitive inhibitor verapamil. Carotenoids showed a low cytotoxicity in cells with MDR with IC(50) values between 100 and 200 μM. The combination of carotenoids with eight structurally different cytotoxic agents synergistically enhanced their cytotoxicity in Caco-2 cells, probably by inhibiting the function of the ABC transporters. For example, fucoxanthin synergistically enhanced the cytotoxicity of 5-FU 53.37-fold, of vinblastine 51.01-fold, and of etoposide 12.47-fold. RT-PCR was applied to evaluate the mRNA levels of P-gp in Caco-2 cells after treatment with carotenoids. Fucoxanthin and canthaxanthin significantly decreased P-gp levels to 12% and 24%, respectively as compared to untreated control levels (p<0.001). This study implies that carotenoids may be utilised as chemosensitisers, especially as adjuvants in chemotherapy.
Phytomedicine | 2013
Mahmoud Zaki El-Readi; Sy Eid; Mohamed L. Ashour; Ahmad Tahrani; Michael Wink
Cancer cells often develop multidrug resistance (MDR) which is a multidimensional problem involving several mechanisms and targets. This study demonstrates that chelidonine and an alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids, has the ability to overcome MDR of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects. Chelidonine and the alkaloid extract inhibited P-gp/MDR1 activity in a concentration-dependent manner in Caco-2 and CEM/ADR5000 and reversed their doxorubicin resistance. In addition, chelidonine and the alkaloid extract inhibited the activity of the drug modifying enzymes CYP3A4 and GST in a dose-dependent manner. The alkaloids induced apoptosis in MDR cells which was accompanied by an activation of caspase-3, -8,-6/9, and phosphatidyl serine (PS) exposure. cDNA arrays were applied to identify differentially expressed genes after treatment with chelidonine and the alkaloid extract. The expression analysis identified a common set of regulated genes related to apoptosis, cell cycle, and drug metabolism. Treatment of Caco-2 cells with 50 μg/ml alkaloid extract and 50 μM chelidonine for up to 48 h resulted in a significant decrease in mRNA levels of P-gp/MDR1, MRP1, BCRP, CYP3A4, GST, and hPXR and in a significant increase in caspase-3 and caspase-8 mRNA. Thus, chelidonine is a promising model compound for overcoming MDR and for enhancing cytotoxicity of chemotherapeutics, especially against leukaemia cells. Its efficacy needs to be confirmed in animal models.
Phytomedicine | 2013
Safaa Yehia Eid; Mahmoud Zaki El-Readi; Essam Eldin Mohamed Nour Eldin; Sameer Hassan Fatani; Michael Wink
P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of β-carotene (40μM) and sanguinarine (1μM) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5μM), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p<0.01) and 46% (p<0.01) in Caco-2, and to 61% (p<0.05) and 1% (p<0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells.
Phytomedicine | 2012
Safaa Yehia Eid; Mahmoud Zaki El-Readi; Michael Wink
In phytotherapy, extracts from medicinal plants are employed which contain mixtures of secondary metabolites. Their modes of action are complex because the secondary metabolites can react with single or multiple targets. The components in a mixture can exert additive or even synergistic activities. In this study, the cytotoxicity of some phytochemicals, including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene) and alkaloids (glaucine, harmine, and sanguinarine) were investigated alone or in combination with the cytotoxic monodesmosidic steroidal saponin digitonin in Caco-2, MCF-7, CEM/ADR5000, and CCRF-CEM cells. Digitonin was combined in non-toxic concentrations (5μM in each cell line; except in MCF-7 the concentration was 2μM), together with a selection of phenolics, terpenoids, and alkaloids to evaluate potential synergistic or additive effects. An enhanced cytotoxicity was observed in most combinations. Even multi-drug resistant (MDR) cells (such as CEM/ADR5000 cells), with a high expression of P-glycoprotein, were responsive to combinations. Sanguinarine was the most cytotoxic alkaloid against CEM/ADR5000, MCF-7, and CCRF-CEM cells alone and in combination with digitonin. As compared to sanguinarine alone, the combination was 44.53-, 15.38-, and 6.65-fold more toxic in each cell line, respectively. Most combinations synergistically increased the cytotoxicity, stressing the importance of synergy when using multi-target drugs and mixtures in phytotherapy.