Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahmoudreza Ovissipour is active.

Publication


Featured researches published by Mahmoudreza Ovissipour.


Food and Bioprocess Technology | 2012

Use of Hydrolysates from Yellowfin Tuna (Thunnus albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria

Reza Safari; Ali Motamedzadegan; Mahmoudreza Ovissipour; Joe M. Regenstein; Asbjorn Gildberg; Barbara Rasco

Two different peptones obtained by enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) head waste have been shown to be effective in promoting the growth of lactic acid bacteria (Lactobacillus bulgaricus Persian Type Culture Collection (PTCC) 1332, Lactobacillus acidophilus PTCC 1643, Lactobacillus casei PTCC 1608, Lactobacillus delbrukii PTCC 1333, Lactobacillus plantarum PTCC 1058, Lactococcus lactis PTCC 1336, and Lactobacillus sakei PTCC 1712). Peptones obtained from the enzymatic hydrolysis with Alcalase or Protamex were used instead of the standard peptones used in commercial MRS media. Peptones produced by Alcalase and Protamex had a 34% and 19% degree of hydrolysis, respectively. The results showed that the peptones from Alcalase and Protamex were better at promoting lactic acid bacteria (LAB) growth than the commercial MRS media (P < 0.05). The choice of proteolytic enzyme used to produce the fish hydrolysate had a considerable impact on the performance of the resulting hydrolysate, both in terms of maximum growth rate and biomass production. Peptones produced using Alcalase, with a higher degree of hydrolysis, induced better growth and performed better overall as an LAB substrate than those using Protamex. Current study revealed that enzymatic-modified fish by-products can be used as low cast nitrogen source for bacterial growth.


Food Chemistry | 2011

Indigenous proteases in the skin of unicorn leatherjacket (Alutherus monoceros) and their influence on characteristic and functional properties of gelatin

Mehraj Ahmad; Soottawat Benjakul; Mahmoudreza Ovissipour; Thummanoon Prodpran

Indigenous proteases in the skin of unicorn leatherjacket (Alutherus monoceros) were characterised using autolytic study. Maximised autolysis was found at pH 7 and 50°C. Autolysis was markedly inhibited by 0.04mM soybean trypsin inhibitor (SBTI), suggesting that heat activated serine protease was predominant in the skin. The impact of indigenous proteases on the properties of gelatin extracted from unicorn leatherjacket skin was investigated. Gelatin was extracted from unicorn leatherjacket skin using distilled water at 50°C for 12h in the presence and absence of 0.04mM SBTI. In the presence of SBTI, the degradation was markedly inhibited, but a lower gelatin extraction yield was obtained (P<0.05). Extracted gelatins contained α(1) and α(2) chains as the predominant components with some degradation peptides. FTIR spectra indicated a greater loss of molecular order of the triple helix and a higher degradation was found in gelatin extracted in the absence of 0.04mM SBTI. The net charge of gelatin samples extracted with and without 0.04mM SBTI became zero at pHs of 8.45 and 7.31, respectively, as determined by ζ-potential titration. Higher gel strength (320.68±3.02g) was obtained in gelatin extracted with SBTI, compared with that of gelatin extracted without SBTI (288.63±1.44g). High emulsifying activity index but lower emulsifying stability index was observed in the former. Therefore, heat-activated serine protease was involved in the degradation of gelatin molecules, thereby affecting the yield, proteinaceous components and properties of gelatin from unicorn leatherjacket skin.


Journal of the Science of Food and Agriculture | 2013

Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases

Mahmoudreza Ovissipour; Barbara Rasco; Setareh Ghorban Shiroodi; Maryam Modanlow; Sanaz Gholami; Mahrokh Nemati

BACKGROUND The antioxidant activity and chemical properties of fish protein hydrolysates (FPHs) prepared from anchovy sprat (Clupeonella engrauliformis) using endogenous enzymes (autolysis) and commercial proteases were investigated. RESULTS The highest degree of hydrolysis (DH) was observed with Alcalase and papain and the highest protein recovery (PR) with Alcalase and bromelain. FPH yield was highest with Alcalase (82.3%) and lowest with autolysis (63.64%). Increased DH resulted in increased FPH yield (R(2) = 0.77). The highest oil recovery was observed with bromelain (6.41%) and the lowest with autolysis (3.58%). Antioxidant activity determined by DPPH, reducing power and ferrous chelation assays was highest in bromelain, Promod and papain FPHs respectively. The highest ABTS activity was observed in Alcalase FPH, followed by Promod and Protamex™ FPHs. The lowest antioxidant activity was observed in autolysed and Flavourzyme FPHs (P > 0.05). Heavy metals (arsenic, lead and mercury) were recorded at levels below the regulatory limits established by the FDA. CONCLUSION Anchovy sprat hydrolysates showed high antioxidant activities and amino acid contents and low heavy metal concentrations, indicating that they have high potential for use in human and animal diets. The high antioxidant activities are related to the high levels of hydrophobic amino acids found in this study.


Journal of Food Protection | 2015

Effect of oxygen stress on growth and survival of Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes under different storage conditions.

Hamzah M. Al-Qadiri; Shyam S. Sablani; Mahmoudreza Ovissipour; Nivin Al-Alami; Byju N. Govindan; Barbara Rasco

This study investigated the growth and survival of three foodborne pathogens (Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes) in beef (7% fat) and nutrient broth under different oxygen levels. Samples were tested under anoxic (<0.5%), microoxic (6 to 8%), and oxic (20%) conditions during storage at 7 °C for 14 days and at 22 °C for 5 days. Two initial inoculum concentrations were used (1 and 2 log CFU per g of beef or per ml of broth). The results show that C. perfringens could grow in beef at 22 °C, with an increase of approximately 5 log under anoxic conditions and a 1-log increase under microoxic conditions. However, C. perfringens could not survive in beef held at 7 °C under microoxic and oxic storage conditions after 14 days. In an anoxic environment, C. perfringens survived in beef samples held at 7 °C, with a 1-log reduction. A cell decline was observed at 2 log under these conditions, with no surviving cells at the 1-log level. However, the results show that C. jejuni under microoxic conditions survived with declining cell numbers. Significant increases in L. monocytogenes (5 to 7 log) were observed in beef held at 22 °C for 5 days, with the lowest levels recovered under anoxic conditions. L. monocytogenes in refrigerated storage increased by a factor of 2 to 4 log. It showed the greatest growth under oxic conditions, with significant growth under anoxic conditions. These findings can be used to enhance food safety in vacuum-packed and modified atmosphere-packaged food products.


Journal of Agricultural and Food Chemistry | 2013

Engineered nanoparticle adhesion and removal from tomato surfaces.

Mahmoudreza Ovissipour; Shyam S. Sablani; Barbara Rasco

Engineered nanoparticles (NPs) are being used in different industries due to their unique physicochemical properties. NPs may be toxic and could pose both public health and environmental contamination risks. In this study, two concentrations (50 and 500 μg mL(-1)) of titania (TiO2), silica (SiO2), and alumina (Al2O3) were applied to contaminate the surface of cherry tomato as a food model, followed by washing with deionized water (DI) to remove the NPs from the tomato surfaces. The NP surface charge and hydrodynamic diameter results showed that the isoelectric point (IEP) for alumina was at pH 9-9.6, for silica at pH <3, and for titania was at pH 6.5-6.8; in addition, the highest hydrodynamic size for all NPs was observed at the IEP. Inductively coupled plasma mass spectrometry (ICP-MS) indicated that the highest NP concentration was observed on tomato surfaces contaminated at the higher concentration (500 μg mL(-1)) (P < 0.05). After the tomatoes had been washed with DI, alumina levels decreased significantly, whereas for titania and silica, no significant difference in NP concentration on tomato surface was observed following the washing treatment. This study shows that removal of NPs may be possible with a simple washing treatment but that removal of NPs is likely to be more effective when the moment ratio is >1, which can occur if the pH of the washing solution is significantly different from the IEP of NPs.


International journal of food science | 2013

Predicting the Quality of Pasteurized Vegetables Using Kinetic Models: A Review

Muhammad Aamir; Mahmoudreza Ovissipour; Shyam S. Sablani; Barbara Rasco

A resurgence in interest examining thermal pasteurization technologies has been driven by demands for “cleaner” labeling and the need of organic and natural foods markets for suitable preventive measures to impede microbial growth and extend shelf life of minimally processed foods and ready-to-eat foods with a concomitant reduction in the use of chemical preservatives. This review describes the effects of thermal pasteurization on vegetable quality attributes including altering flavor and texture to improve consumer acceptability, stabilizing color, improving digestibility, palatability and retaining bioavailability of important nutrients, and bioactive compounds. Here, we provide kinetic parameters for inactivation of viral and bacterial pathogens and their surrogates and marker enzymes used to monitor process effectiveness in a variety of plant food items. Data on thermal processing protocols leading to higher retention and bioactivity are also presented. Thermal inactivation of foodborne viruses and pathogenic bacteria, specifically at lower pasteurization temperatures or via new technologies such as dielectric heating, can lead to greater retention of “fresh-like” properties.


International Journal of Food Properties | 2014

Seasonality of the Thermal Kinetics of Color Changes in Whole Spinach (Spinacia Oleracea) Leaves Under Pasteurization Conditions

Muhammad Aamir; Mahmoudreza Ovissipour; Barbara Rasco; Juming Tang; Shyam S. Sablani

Color changes in whole spinach (Spinacia oleracea) leaves at pasteurization temperatures (65 to 90°C) indicate that the parameter of “greenness” (-at/bt) increased during a short initial period of heating, followed by a loss that was more pronounced at higher temperatures. Seasonality was evident in kinetic models for color changes possibly due to seasonal difference in chemical composition influencing color degradation kinetics. The mechanism for loss of greenness at lower temperatures was attributed to enzymatic activity while cell collapse, cell compaction, and oxidative changes were probably more important at higher temperatures. Lower temperatures resulted in a higher retention of green color of spinach leaves during the thermal pasteurization process and the kinetic models presented in this work could be used for optimizing pasteurization processes.


Journal of Aquaculture Research and Development | 2011

Fatty acid and Amino acid Profiles of Domestic and Wild Beluga (Huso huso) Roe and Impact on Fertilization Ratio

Mahmoudreza Ovissipour; Barbara Rasco

A comparison of the fatty acid, amino acid and proximate composition between the roe of wild and cultivated beluga (Huso huso) sturgeon from Iran are presented here. The fatty acid profile varied between wild and cultivated sturgeons but there was no differences observed for proximate composition and amino acid profile. The wild sturgeon roe contained higher amounts of n-3 fatty acids particularly eicosapentaenoic acid (20:5n-3, EPA) (wild: 2.9%, cultivated: 1.24%) and docosahexaenoic acid (22:6n-3, DHA) (wild: 5.1%, cultivated: 2.38%). Linolenic and linoleic acids were the predominant fatty acids in roe from cultivated beluga, a reflection of diet and also a likely physiological adaptation to a higher temperature environment. Low levels of PUFA in cultivated sturgeon negatively affected fertilization and hatching ratios which were significantly lower than for the wild fish. Hence, in order to culture beluga, feed with higher fatty acid with more n-3 is necessary to reach high quality roe and fertilization and hatching ratio.


International Journal of Food Microbiology | 2016

Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis)

Hamzah M. Al-Qadiri; Murad A. Al-Holy; Setareh Ghorban Shiroodi; Mahmoudreza Ovissipour; Byju N. Govindan; Nivin Al-Alami; Shyam S. Sablani; Barbara Rasco

The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus and Campylobacter jejuni in laboratory contaminated live clam (Venerupis philippinarum) and mussel (Mytilus edulis) was investigated. The initial levels of bacterial contamination were: in clam 4.9 to 5.7log10CFU/g, and in mussel 5.1 to 5.5log10CFU/g. Two types of AEW were used for treatment time intervals of 1 and 2h: strong (SAEW) with an available chlorine concentration (ACC) of 20mg/L, pH=3.1, and an oxidation-reduction potential (ORP) of 1150mV, and weak (WAEW) at ACC of 10mg/L, pH=3.55 and ORP of 950mV. SAEW and WAEW exhibited significant inhibitory activity against inoculated bacteria in both shellfish species with significant differences compared to saline solutions treatments (1-2% NaCl) and untreated controls (0h). SAEW showed the largest inhibitory activity, the extent of reduction (log10CFU/g) ranged from 1.4-1.7 for E. coli O104:H4; 1.0-1.6 for L. monocytogenes; 1.3-1.6 for A. hydrophila; 1.0-1.5 for V. parahaemolyticus; and 1.5-2.2 for C. jejuni in both types of shellfish. In comparison, significantly (P<0.05) lower inhibitory effect of WAEW was achieved compared to SAEW, where the extent of reduction (log10CFU/g) ranged from 0.7-1.1 for E. coli O104:H4; 0.6-0.9 for L. monocytogenes; 0.6-1.3 for A. hydrophila; 0.7-1.3 for V. parahaemolyticus; and 0.8-1.9 for C. jejuni in both types of shellfish. Among all bacterial strains examined in this study, AEW induced less bacterial injury (~0.1-1.0log10CFU/g) and more inactivation effect. This study revealed that AEW (10-20mg/L ACC) could be used to reduce bacterial contamination in live clam and mussel, which may help control possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.


Journal of Food Science | 2016

Efficacy of Neutral Electrolyzed Water, Quaternary Ammonium and Lactic Acid-Based Solutions in Controlling Microbial Contamination of Food Cutting Boards Using a Manual Spraying Technique

Hamzah M. Al-Qadiri; Mahmoudreza Ovissipour; Nivin Al-Alami; Byju N. Govindan; Setareh Ghorban Shiroodi; Barbara Rasco

Bactericidal activity of neutral electrolyzed water (NEW), quaternary ammonium (QUAT), and lactic acid-based solutions was investigated using a manual spraying technique against Salmonella Typhimurium, Escherichia coli O157:H7, Campylobacter jejuni, Listeria monocytogenes and Staphylococcus aureus that were inoculated onto the surface of scarred polypropylene and wooden food cutting boards. Antimicrobial activity was also examined when using cutting boards in preparation of raw chopped beef, chicken tenders or salmon fillets. Viable counts of survivors were determined as log10 CFU/100 cm(2) within 0 (untreated control), 1, 3, and 5 min of treatment at ambient temperature. Within the first minute of treatment, NEW and QUAT solutions caused more than 3 log10 bacterial reductions on polypropylene surfaces whereas less than 3 log10 reductions were achieved on wooden surfaces. After 5 min of treatment, more than 5 log10 reductions were achieved for all bacterial strains inoculated onto polypropylene surfaces. Using NEW and QUAT solutions within 5 min reduced Gram-negative bacteria by 4.58 to 4.85 log10 compared to more than 5 log10 reductions in Gram-positive bacteria inoculated onto wooden surfaces. Lactic acid treatment was significantly less effective (P < 0.05) compared to NEW and QUAT treatments. A decline in antimicrobial effectiveness was observed (0.5 to <2 log10 reductions were achieved within the first minute) when both cutting board types were used to prepare raw chopped beef, chicken tenders or salmon fillets.

Collaboration


Dive into the Mahmoudreza Ovissipour's collaboration.

Top Co-Authors

Avatar

Barbara Rasco

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shyam S. Sablani

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Juming Tang

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byju N. Govindan

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn F. Ross

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Aamir

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Soottawat Benjakul

Prince of Songkla University

View shared research outputs
Researchain Logo
Decentralizing Knowledge