Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahmud Tareq Hassan Khan is active.

Publication


Featured researches published by Mahmud Tareq Hassan Khan.


Chemico-Biological Interactions | 2009

Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies

Mahmud Tareq Hassan Khan; Ilkay Erdogan Orhan; F.S. Şenol; Murat Kartal; B. Şener; M. Dvorská; K. Šmejkal; T. Šlapetová

Flavonoids are one of the largest classes of plant secondary metabolites and are known to possess a number of significant biological activities for human health. In this study, we examined in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of four flavonoid derivatives--quercetin, rutin, kaempferol 3-O-beta-D-galactoside and macluraxanthone. The in vitro results showed that quercetin and macluraxanthone displayed a concentration-dependant inhibition of AChE and BChE. Macluraxanthone showed to be the most potent and specific inhibitor of both the enzymes having the IC(50) values of 8.47 and 29.8 microM, respectively. The enzyme kinetic studies revealed that quercetin inhibited both the enzymes in competitive manner, whereas the mode of inhibition of macluraxanthone was non-competitive against AChE and competitive against BChE. The inhibitory profiles of the compounds have been compared with standard AChE inhibitor galanthamine. To get insight of the intermolecular interactions, the molecular docking studies of these two compounds were performed at the active site 3D space of both the enzymes, using ICM-Dock module. Docking studies exhibited that macluraxanthone binds much more tightly with both the enzymes than quercetin. The calculated docking and binding energies also supported the in vitro inhibitory profiles (IC(50) values). Both the compounds showed several strong hydrogen bonds to several important amino acid residues of both the enzymes. A number of hydrophobic interactions could also explain the potency of the compounds to inhibit AChE and BChE.


Steroids | 2010

Alpha-glucosidase and tyrosinase inhibitors from fungal hydroxylation of tibolone and hydroxytibolones

M. Iqbal Choudhary; S. Adnan Ali Shah; Atta-ur-Rahman; Shamsun Nahar Khan; Mahmud Tareq Hassan Khan

Sixteen new and one known metabolites 4-20 were obtained by incubation of tibolone (1) and hydroxytibolones (2 and 3) with various fungi. Their structures were elucidated by means of a homo and heteronuclear 2D NMR and by HREI-MS techniques. The relative stereochemistry was deduced by 2D NOESY experiment. Metabolites of tibolone (1) exhibited significant inhibitory activities against alpha-glucosidase and tyrosinase enzymes. Hydroxylations at C-6, C-10, C-11, C-15 positions and alpha,beta-unsaturation at C-1/C-2, C-4/C-5 showed potent inhibitory activities against these enzymes.


Reviews in Medical Virology | 2012

Genome analysis of the new human polyomaviruses

Marijke Van Ghelue; Mahmud Tareq Hassan Khan; Bernhard Ehlers; Ugo Moens

Polyomaviridae is a growing family of naked, double‐stranded DNA viruses that infect birds and mammals. The last few years, several new members infecting birds or primates have been discovered, including seven human polyomaviruses: KI, WU, Merkel cell polyomavirus, HPyV6, HPyV7, trichodysplasia spinulosa‐associated polyomavirus, and HPyV9. In addition, DNA and antibodies against the monkey lymphotropic polyomavirus have been detected in humans, indicating that this virus can also infect man. However, little is known about the route of infection, transmission, cell tropism, and, with the exception of Merkel cell polyomavirus and trichodysplasia spinulosa‐associated polyomavirus, the pathogenicity of these viruses. This review compares the genomes of these emerging human polyomaviruses with previously known polyomaviruses detected in man, reports mutations in different isolates, and predicts structural and functional properties of their viral proteins. Copyright


New Biotechnology | 2009

Recent advancements for the evaluation of anti-viral activities of natural products

Debprasad Chattopadhyay; Mamta Chawla Sarkar; Tapan Kumar Chatterjee; Rakhi Sharma Dey; Paromita Bag; Sekhar Chakraborti; Mahmud Tareq Hassan Khan

Significant progress has been achieved for the development of novel anti-viral drugs in the recent years. Large numbers of these newly developed drugs belong to three groups of compounds, nucleoside analogues, thymidine kinase-dependent nucleotide analogues and specific viral enzyme inhibitors. It has been found that the natural products, like plant extract, plant-derived compounds (phytochemicals) and so on, as well as traditional medicines, like Ayurvedic, traditional Chinese medicine (TCM), Chakma medicines and so on, are the potential sources for potential and novel anti-viral drugs based on different in vitro and in vivo approaches. In this chapter some of these important approaches utilised in the drug discovery process of potential candidate(s) for anti-viral agents are being discussed. The key conclusion is that natural products are one of the most important sources of novel anti-viral agents.


BMC Complementary and Alternative Medicine | 2008

Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis

Letizia Penolazzi; Ilaria Lampronti; Monica Borgatti; Mahmud Tareq Hassan Khan; Margherita Zennaro; Roberta Piva; Roberto Gambari

BackgroundOsteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of Emblica officinalis fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.MethodsThe effects of extracts from Emblica officinalis on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of Emblica officinalis extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, in vitro effects of Emblica officinalis extracts on NF-kB transcription factor activity were determined by gel shift experiments.ResultsExtracts of Emblica officinalis were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. Emblica officinalis increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that Emblica officinalis extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that Emblica officinalis extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of Emblica officinalis on the expression levels of interleukin-6, a NF-kB specific target gene.ConclusionInduction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of Emblica officinalis extracts as an alternative tool for therapy applied to bone diseases.


New Biotechnology | 2009

Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects.

Mahmud Tareq Hassan Khan

Alzheimers disease (AD) is a neurodegenerative disorder characterized by a low amount of acetylcholine (ACh) in hippocampus and cortex. Acetylcholinesterase (AChE) is one of the most important enzymes in many living organisms including human being and other vertebrates, insects like mosquitoes, among others. Several reports have been published where it has been clearly shown that the genesis of amyloid protein plaques associated with AD is connected to modifications of both AChE and butyrylcholinesterase (BChE), since the plaque is significantly decreased in AD patients using cholinesterase inhibitors (ChEIs). This review gives some examples of these inhibitors discovered during past couple of years that have shown very prominent interactions at the active site triad of the proteins as well as different other parts of the active site like, peripheral anionic site (PAS), oxyanionic hole, anionic subsite or acyl binding pocket (ABP). Most of the inhibition and their interactions have been visualized by X-ray crystallography, but some of the other inhibitors have been studied either by molecular docking or molecular dynamic (MD) simulations or by both the in silico methods. Some of these prominent studies have been crucially observed and reported here.


ChemMedChem | 2007

Prediction of tyrosinase inhibition activity using atom-based bilinear indices.

Yovani Marrero-Ponce; Mahmud Tareq Hassan Khan; Gerardo M. Casañola Martín; Arjumand Ather; Mukhlis N. Sultankhodzhaev; Francisco Torrens; Richard Rotondo

A set of novel atom‐based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph‐theoretical electronic‐density matrices, Mk and Sk, respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using Mk and Sk as matrix operators of bilinear transformations. Chemical information is coded by using different pair combinations of atomic weightings (mass, polarizability, vdW volume, and electronegativity). The results of QSAR studies of tyrosinase inhibitors using the new MDs and linear discriminant analysis (LDA) demonstrate the ability of the bilinear indices in testing biological properties. A database of 246 structurally diverse tyrosinase inhibitors was assembled. An inactive set of 412 drugs with other clinical uses was used; both active and inactive sets were processed by hierarchical and partitional cluster analyses to design training and predicting sets. Twelve LDA‐based QSAR models were obtained, the first six using the nonstochastic total and local bilinear indices and the last six with the stochastic MDs. The discriminant models were applied; globally good classifications of 99.58 and 89.96 % were observed for the best nonstochastic and stochastic bilinear indices models in the training set along with high Matthews correlation coefficients (C) of 0.99 and 0.79, respectively, in the learning set. External prediction sets used to validate the models obtained were correctly classified, with accuracies of 100 and 87.78 %, respectively, yielding C values of 1.00 and 0.73. This subset contains 180 active and inactive compounds not considered to fit the models. A simulated virtual screen demonstrated this approach in searching tyrosinase inhibitors from compounds never considered in either training or predicting series. These fitted models permitted the selection of new cycloartane compounds isolated from herbal plants as new tyrosinase inhibitors. A good correspondence between theoretical and experimental inhibitory effects on tyrosinase was observed; compound CA6 (IC50=1.32 μM) showed higher activity than the reference compounds kojic acid (IC50=16.67 μM) and L‐mimosine (IC50=3.68 μM).


Chemical Biology & Drug Design | 2010

Bond-Based 2D Quadratic Fingerprints in QSAR Studies. Virtual and In Vitro Tyrosinase Inhibitory Activity Elucidation

Gerardo M. Casañola-Martín; Yovani Marrero-Ponce; Mahmud Tareq Hassan Khan; Sher Bahadar Khan; Francisco Torrens; Facundo Pérez-Jiménez; Antonio Rescigno; Concepción Abad

In this report, we show the results of quantitative structure–activity relationship (QSAR) studies of tyrosinase inhibitory activity, by using the bond‐based quadratic indices as molecular descriptors (MDs) and linear discriminant analysis (LDA), to generate discriminant functions to predict the anti‐tyrosinase activity. The best two models [Eqs (6) and (12)] out of the total 12 QSAR models developed here show accuracies of 93.51% and 91.21%, as well as high Matthews correlation coefficients (C) of 0.86 and 0.82, respectively, in the training set. The validation external series depicts values of 90.00% and 89.44% for these best two equations (6) and (12), respectively. Afterwards, a second external prediction data are used to perform a virtual screening of compounds reported in the literature as active (tyrosinase inhibitors). In a final step, a series of lignans is analysed using the in silico‐developed models, and in vitro corroboration of the activity is carried out. An issue of great importance to remark here is that all compounds present greater inhibition values than Kojic Acid (standard tyrosinase inhibitor: IC50 = 16.67 μm). The current obtained results could be used as a framework to increase the speed, in the biosilico discovery of leads for the treatment of skin disorders.


Evidence-based Complementary and Alternative Medicine | 2008

Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences

Ilaria Lampronti; Mahmud Tareq Hassan Khan; Monica Borgatti; Nicoletta Bianchi; Roberto Gambari

Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements.


Medicinal Chemistry Research | 2012

Antimicrobial, analgesic, DPPH scavenging activities and molecular docking study of some 1,3,5-triaryl-2-pyrazolines

Seranthimata Samshuddin; B. Narayana; B. K. Sarojini; Mahmud Tareq Hassan Khan; H. S. Yathirajan; Chenna Govindaraju Darshan Raj; Ramappa Raghavendra

A series of 1,3,5-triaryl-2-pyrazolines 2a–g were synthesized by the reaction of 4,4′-disubstituted chalcone with phenyl hydrazine. All these compounds were characterized by NMR, IR and mass spectral and single crystal XRD data. All the synthesized products were screened for their in vitro antimicrobial, analgesic and antioxidant properties. The docking studies were carried out for these compounds against the active site of methionyl-tRNA synthetase (metRS). Some of the tested compounds exhibited significant antimicrobial, analgesic, DPPH scavenging activities and molecular binding.

Collaboration


Dive into the Mahmud Tareq Hassan Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yovani Marrero-Ponce

Universidad San Francisco de Quito

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge