Mahmut Özacar
Sakarya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahmut Özacar.
Journal of Hazardous Materials | 2003
Mahmut Özacar; I. Ayhan Şengil
An attempt to alleviate the problem caused by the presence of reactive dyes in textile effluents was undertaken. Since alunite is a very abundant and inexpensive, we decided to experiment with it as a potential adsorbent for a certain type of the supracited pollutants used in cellulose fibers dyeing. The adsorption of Reactive Blue 114 (RB114), Reactive Yellow 64 (RY64) and Reactive Red 124 (RR124) by calcined alunite was studied by varying parameters such as the calcination temperature and time, particle size, pH, agitation time and dye concentration. Acidic pH was favorable for the adsorption of RB114 and alkaline pH was favorable to both RY64 and RR124. The equilibrium data fit the Langmuir isotherm. The adsorption capacities were found to be 170.7, 236 and 153 mg dye per gram of calcined alunite for RB114, RY64 and RR124, respectively. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data were fitted by the second-order kinetic model, which indicates that chemicalsorption is the rate limiting step, inside of mass transfer.
Adsorption-journal of The International Adsorption Society | 2003
Mahmut Özacar
The adsorption of phosphorus onto calcined alunite has been studied. Its equilibrium isotherm has been measured. The isotherm was determined by shaking 1.0 g calcined alunite, particle size range 90–150 μm, with 100 mL phosphorus solution of initial concentrations from 0.5 to 2.5 mmol/L. The water bath shaking a constant rate of 200-rpm was used and the temperature maintained at 298 ± 2 K. A contact time of 120 min was required to achieve equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equations. The monolayer adsorption capacity is 1.355 mmol P per g calcined alunite. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphorus could be described by the pseudo second-order equation.
Chemosphere | 2003
Mahmut Özacar
The phosphate removal potential of alunite, a low cost and abundantly available material, has been investigated. The effects of calcination temperature and time of alunite, adsorbent particle size, pH and initial phosphate concentration on the phosphate adsorption by the calcined alunite have been studied. Phosphate removal was seen to increase with increasing calcination temperature, decreasing adsorbent particle size and pH. Adsorption of phosphate followed first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of phosphate onto calcined alunite fitted to the Langmuir model more than Freundlich model. Specific surface areas of the calcined alunite were calculated at different calcination temperatures and particle sizes.
Journal of Hazardous Materials | 2009
I. Ayhan Şengil; Mahmut Özacar
The removal of color from synthetic wastewater containing Reactive Black 5 was experimentally investigated using direct current electrocoagulation at iron electrodes. The effects of operational parameters such as current density, initial pH, electrolysis time, initial dye concentration and solution conductivity on color removal efficiency were investigated in this study. The optimum operating range for each of these operating variables was experimentally determined. The experimental results show that the color of Reactive Black 5 in the aqueous phase was removed effectively. Under the conditions of an initial dye concentration of 100 mg L(-1), initial pH of 5, current density of 4.575 mAcm(-2), salt concentration of 3000 mg L(-1), temperature of 20 degrees C, and interelectrode distance of 2.5 cm, the color removal efficiency reached 98.8%. Electrical energy consumption in the above conditions for the decolorization of the dye solution containing Reactive Black 5 was 4.96 kWh/kg dye. Results show that the first-order rate equation provides the best correlation for the decolorization rate of Reactive Black 5.
Journal of Hazardous Materials | 2009
I A Sengil; Mahmut Özacar
Competitive biosorption of Pb(2+), Cu(2+) and Zn(2+) on valonia tannin resin (VTR) present in binary and ternary mixture were compared with the single metal solution. The effects of the presence of one metal ion on the biosorption of the other metal ion were investigated in terms of equilibrium isotherm and biosorption yield. Experimental results indicated that the uptake capacity and biosorption yield of one metal ion were reduced by the presence of the other metal ion. The extent of adsorption capacity of the binary and ternary metal ions tested on VTR was low (18-80%) as compared to single metal ions. Comparisons between biosorption of Pb(2+), Cu(2+) and Zn(2+) ions by the biomass of VTR in the binary and ternary solution could lead to the conclusion that biosorption of Pb(2+) ions was preferential to that of Cu(2+) and Zn(2+) ions. VTR removed the target metal ions in the selectivity order of Pb(2+)>Cu(2+)>Zn(2+). The biosorption equilibrium data for the single metal solutions fitted the Langmuir model well. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process in the single-ion system.
Adsorption-journal of The International Adsorption Society | 2002
Mahmut Özacar; I. Ayhan Şengil
Dyestuff production units and dyeing units have always had a pressing need for techniques that allow economical pretreatment for color in the effluent. The effectiveness of adsorption for dye removal from wastewaters had made it an ideal alternative to other expensive treatment options. This paper deals with an investigation on alunite, existing wide reserves in Türkiye and in the world, for dye removal. Calcined alunite was utilized for this study and its performance evaluated against that of granular activated carbon (GAC). The use of calcined alunite for the removal of Acid Blue 40 and Acid Yellow 17 (AB 40 and AY 17) from aqueous solution at different calcination temperature and time, particle size, pH, agitation time and dye concentration has been investigated. The adsorption followed by Langmuir and Freundlich isotherms. The process follows first order adsorption rate expression and the rate constant was found to be 7.65 × 10−2 and 5.74 × 10−2 min−1 for adsorption of AB 40 and AY 17 on calcined alunite, and 8.41 × 10−2 and 10.04 × 10−2 min−1 for adsorption of AB 40 and AY 17 on GAC, respectively. The equilibrium saturation adsorption capacities were 212.8 mg dye/g calcined alunite and 151.5 mg dye/g calcined alunite for AB 40 and AY 17, respectively. The adsorption capacities were found to be 57.47 mg and 133.3 mg dye per g of GAC for AB 40 and AY 17, respectively. The results indicate that, for the removal of acid dye, calcined alunite was most effective adsorbent, although comparable dye removals were exhibited by GAC.
Journal of Hazardous Materials | 2008
I. Ayhan Şengil; Mahmut Özacar
The biosorption of Cu(II) from aqueous solutions by mimosa tannin resin (MTR) was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmiur isotherm. The experimental data were analysed using four sorption kinetic models -- the pseudo-first- and second-order equations, and the Elovich and the intraparticle diffusion equation -- to determine the best fit equation for the biosorption of copper ions onto mimosa tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well. Thermodynamic parameters such as the entropy change, enthalpy change and Gibbs free energy change were found out to be 153.0 J mol(-1)K(-1), 42.09 kJ mol(-1) and -2.47 kJ mol(-1), respectively.
Water Research | 2000
Mahmut Özacar; I. Ayhan Şengil
Abstract For evaluating the tannin (natural polyelectrolyte) and AN913 (synthetic anionic polyelectrolyte) as a coagulant aid for treating raw water to remove suspended matter the tannin or AN913 was added to the synthetic water sample which was stirred and then allowed to settle. After a settled time a sample of the supernatant liquid was removed and its turbidity determined. For use as sludge conditioners the optimum polymer dose was determined. Formed sludge dewatering investigated for optimum pH and optimum dose of coagulant and coagulant aids. The sludge filterability was determined by specific resistance measurements. Tannin and Al 2 (SO 4 ) 3 together gave a significant improvement comparing with Al 2 (SO 4 ) 3 only. As coagulant aids, tannin was more effective than AN913.
Journal of Hazardous Materials | 2009
I. Ayhan Şengil; Mahmut Özacar; Harun Türkmenler
The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.
Journal of Hazardous Materials | 2003
Mahmut Özacar; I. Ayhan Şengil
Aluminum sulfate, alum, is a common chemical coagulant used for coagulation. Recently, polymers have been utilized in coagulation/flocculation processes for water purification. In this study, the ability of two organic polymers, tannin (natural polyelectrolyte) and AN913 (synthetic anionic polyelectrolyte), and clay to act as coagulant aids was tested, in the removal of phosphate from synthetic wastewater. Contaminants in synthetic waters were coagulated using alum, alum+clay, alum+tannin, alum+AN913, alum+tannin+clay and alum+AN913+clay. Alum together with polymers as coagulant aids yielded a significant improvement in phosphate removal compared with alum alone, for initial phosphate concentrations of 5-15 mg/l PO(4)(3-). The use of clay and polyelectrolytes improved the efficiency of phosphate removal and lowered the required alum dose. Fourier transform infrared (FTIR) spectroscopy was used for the identification and characterization of the aluminum species formed during dephosphorization of the synthetic wastewater with and without tannin, AN913 and clay. Evidence from FTIR spectroscopy showed the formation of aluminum hydroxyphosphate, hydroxy-Al-tannate and aluminum complexes containing phosphorus, tannin and AN913.