Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahtab Mozafari is active.

Publication


Featured researches published by Mahtab Mozafari.


Geosphere | 2015

Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy)

A Bistacchi; Fabrizio Balsamo; Fabrizio Storti; Mahtab Mozafari; Rudy Swennen; John Solum; Christian Tueckmantel; Conxita Taberner

Different remote sensing technologies, including photogrammetry and LIDAR (light detection and ranging), allow collecting three-dimensional (3D) data sets that can be used to create 3D digital representations of outcrop surfaces, called digital outcrop models (DOM). The main advantages of photogrammetry over LIDAR are represented by the very simple and lightweight field equipment (a digital camera), and by the arbitrary spatial resolution, that can be increased simply getting closer to the outcrop or by using a different lens. The quality of photogrammetric data sets obtained with structure from motion (SFM) techniques has shown a tremendous improvement over the past few years, and this is becoming one of the more effective ways to collect DOM data sets. The Vajont Gorge (Belluno Dolomites, Italy) provides spectacular outcrops of jurassic limestones (Vajont Limestone Formation) in which mesozoic faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for fluids, resulting in structurally controlled dolomitization. A 3D DOM study, based on a photogrammetric SFM data set, was carried out, aimed at enabling interdisciplinary characterization and reconstruction of coupled brittle deformation and fluid flow processes. For this study we used a DOM (730 m × 360 m × 270 m) consisting of continuous triangulated surfaces representing the outcrop, textured with high-resolution images. Interpretation and modeling performed on this data set include (1) georeferencing of structural measurements and sampling stations; (2) tracing of stratigraphic boundaries, structural surfaces, and dolomitization fronts (ground-truthed); (3) correlation and extrapolation of realistic 3D surfaces from these traces; and (4) development of a 3D geological model at the scale of the Vajont Gorge, including stratigraphy, faults, dolomitization fronts, and volumetric meshes suitable for the statistical analysis of structural, diagenetic, and geochemical parameters. The DOM study highlighted the close relationship between faults and dolostone geobodies, demonstrating that dolomitization was guided by fluid infiltration along Mesozoic normal faults. In order to explore the uncertainty associated with the 3D model of irregularly shaped dolostone bodies, three different 3D dolostone geobody realizations have been modeled, providing a minimum, intermediate, and maximum estimate of the dolostone/limestone volumetric facies ratio, while honoring the field constraints.


Geological Society of America Bulletin | 2016

Anatomy and paleofluid evolution of laterally restricted extensional fault zones in the Jabal Qusaybah anticline, Salakh arch, Oman

Fabrizio Balsamo; Luca Clemenzi; Fabrizio Storti; Mahtab Mozafari; John Solum; Rudy Swennen; Conxita Taberner; Christian Tueckmantel

The E-W−trending Jabal Qusaybah anticline, at the western termination of the Salakh arch, Oman Mountains, is characterized by a complex fault network that developed in layered Cretaceous carbonates. This network includes NE-SW left-lateral, N-S extensional, and subordinate E-W extensional fault zones. The N-S−striking extensional faults zones are roughly perpendicular to the fold axis and are best developed in the longitudinally bulged central sector of the anticlinal crest. They are likely due to along-strike outer-arc extension associated with positive fault inversion and salt migration. These extensional fault zones are confined within, and locally abut, major NE-SW left-lateral strike-slip fault zones. Extensional fault displacements range between a few decimeters and ∼60 m, whereas the maximum exposed trace lengths range between a few meters and ∼800 m. Narrow (∼1−15-cm-thick) cataclastic fault cores are surrounded by vein-dominated damage zones as thick as tens of meters. Moreover, fault zones show widespread evidence for substantial dilation in the form of (1) dilation breccias, (2) infilling by large columnar calcite crystals and aggregates, and (3) centimeter- to meter-thick veins. Dilation breccias and calcite infillings are primarily localized at fault tips, fault overlaps, and interaction zones between strike-slip and extensional fault segments. Displacement profiles along the N-S−striking extensional fault zones indicate that they are one order of magnitude shorter than values predicted by most published displacement-length scaling laws. By analyzing fault abutting geometries, detailed vein relative chronology, δ13C and δ18O signatures, and fluid inclusion data from calcite veins and calcite fault infillings, we propose a model whereby a deep-seated, regionally sized, left-lateral strike-slip fault system that was active during anticline growth inhibited the lateral propagation of late-stage transversal extensional fault zones. Our findings show that, in this geological setting, the structural position, rather than fault displacement, is the parameter controlling the location of the more dilatants (and permeable) fault segments. Results of the present work suggest that fault intersections may be more useful than fault throw for predicting zones of enhanced vertical fluid flow in structurally complex carbonate reservoirs.


Tectonics | 2015

Complex fault-fold interactions during the growth of the Jabal Qusaybah anticline at the western tip of the Salakh Arch, Oman

Fabrizio Storti; Fabrizio Balsamo; Luca Clemenzi; Mahtab Mozafari; M.H.N Al-Kindy; John Solum; Rudy Swennen; Conxita Taberner; Christian Tueckmantel

The Jabal Qusaybah anticline is located at the western end of the Salakh Arch, a major salient in the foothills of the Oman Mountains. We performed a structural and petrographical-geochemical study of vein sets and fault zones associated with the development of this anticline. Our data illustrate a complex deformation pattern both in space and time, characterized by the unusual presence of widespread NE-SW left-lateral strike-slip fault zones trending oblique to the E-W fold axial strike, and of abundant and well-developed N-S fold-perpendicular extensional fault zones associated with axial bulging and dilation, well developed in the central region of the anticlinal crest. We propose a three-stage evolution for the Jabal Qusaybah anticline, starting with prefolding jointing in the foreland of the late Cretaceous Oman Mountains, and followed by development of extensional faulting in Campanian times. Positive inversion of the Qusaybah Fault, possibly in Miocene times, caused development of a layer-parallel shortening fabric and amplification the Jabal Qusaybah Anticline, in concomitance with the activity of NE-SW left-lateral strike-slip fault zones that triggered N-S, fold-perpendicular extensional faulting, particularly in the axial bump of the anticline. The final evolutionary stage was characterized by further amplification of the axial bump and related N-S extensional fracturing and by uplift and exhumation. To explain the complex noncylindrical fault-fold interactions in the study anticline, we tentatively propose that they were triggered by near foredeep-parallel tapering of the sedimentary/tectonic overburden of the Ara evaporites.


Journal of Sedimentary Research | 2015

Paleofluid Evolution In Fault-Damage Zones: Evidence From Fault–Fold Interaction Events In the Jabal Qusaybah Anticline (Adam Foothills, North Oman)

Mahtab Mozafari; Rudy Swennen; Fabrizio Balsamo; Luca Clemenzi; Fabrizio Storti; Hamdy El Desouky; Frank Vanhaecke; Christian Tueckmantel; John Solum; Conxita Taberner


Marine and Petroleum Geology | 2017

Origin of the saline paleofluids in fault-damage zones of the Jabal Qusaybah Anticline (Adam Foothills, Oman): Constraints from fluid inclusions geochemistry

Mahtab Mozafari; Rudy Swennen; Philippe Muchez; Elvira Vassilieva; Fabrizio Balsamo; Fabrizio Storti; Jacques Pironon; Conxita Taberner


Tectonics | 2015

Complex fault-fold interactions during the growth of the Jabal Qusaybah anticline at the western tip of the Salakh Arch, Oman: Evolution of Jabal Qusaybah anticline

Fabrizio Storti; Fabrizio Balsamo; Luca Clemenzi; Mahtab Mozafari; M.H.N Al-Kindy; John Solum; Rudy Swennen; Conxita Taberner; Christian Tueckmantel


Archive | 2014

Abutting architectures, displacement gradients, damage zone vein patterns and geochemistry of strike-slip-compartmentalized normal faults in the Jabal Qusaybah Anticline, Salakh Arc, Oman

Fabrizio Balsamo; Luca Clemenzi; Fabrizio Storti; Mahtab Mozafari; Rudy Swennen; John Solum; Christian Tueckmantel; Conxita Taberner


Archive | 2014

Fracture controlled fluid flow in Cretaceous carbonates of the Natih Formation (Jabal Qusaybah, North Oman)

Mahtab Mozafari; Rudy Swennen; Fabrizio Balsamo; Luca Clemenzi; Fabrizio Storti; Hamdy El Desouky; Christian Tueckmantel; John Solum; Conxita Taberner


Archive | 2014

Interplay between oblique strike-slip faulting and fold-perpendicular extension during the growth of the Jebel Qusaybah inversion anticline, at western tip of the Salakh Arch, Oman

Fabrizio Storti; Fabrizio Balsamo; Luca Clemenzi; Mahtab Mozafari; M.H.N Al-Kindy; John Solum; Christian Tueckmantel; Rudy Swennen; Conxita Taberner


Archive | 2014

Structural anatomy and paleofluid flow evolution of strike-slip-compartmentalized extensional fault zones in the Jabal Qusaybah anticline, Salakh Arc, Oman

Fabrizio Balsamo; Luca Clemenzi; Fabrizio Storti; Mahtab Mozafari; Rudy Swennen; John Solum; Christian Tueckmantel; Conxita Taberner

Collaboration


Dive into the Mahtab Mozafari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudy Swennen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.H.N Al-Kindy

Petroleum Development Oman

View shared research outputs
Top Co-Authors

Avatar

Hamdy El Desouky

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge