Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mai A. Sarraj is active.

Publication


Featured researches published by Mai A. Sarraj.


Biology of Reproduction | 2010

Activin A Balances Sertoli and Germ Cell Proliferation in the Fetal Mouse Testis

Sirisha Mendis; Sarah J. Meachem; Mai A. Sarraj; Kate L. Loveland

Activin affects many aspects of cellular development, including those essential for reproductive fitness. This study examined the contribution of activin A to murine fetal testicular development, revealing contrasting outcomes of activin actions on Sertoli cells and gonocytes. Shortly after sex determination, from Embryonic Day 12.5 (E12.5) through to birth (0 dpp), the activin A subunit transcript (Inhba) level rises in testis but not ovary, followed closely by the Inha transcript (encoding the inhibitory inhibin alpha subunit). Activin receptor transcript levels also change, with Acvr1 (encoding ALK2) and Acvr2b (ActRIIB) significantly higher and lower, respectively, at 0 dpp compared with E13.5 and E15.5. Transcripts encoding the signaling mediators Smad1, Smad3, and Smad4 were higher at 0 dpp compared with E13.5 and E15.5, whereas Smad2, Smad5, and Smad7 were lower. Detection of phosphorylated (P-)SMAD2/3 in nearly all testis cell nuclei indicated widespread transforming growth factor beta (TGFB) and/or activin ligand signaling activity. In contrast to wild-type littermates, activin betaA subunit knockout (Inhba−/−) mice have significantly smaller testes at birth, attributable to a 50% lower Sertoli cell number and decreased Sertoli cell proliferation from E13.5. Inhba−/− testes contained twice the normal gonocyte number at birth, with some appearing to bypass quiescence. Persistence of widespread P-SMAD2/3 in Inhba−/− cells indicates other TGFB superfamily ligands are active in fetal testes. Significant differences in Smad and cell cycle regulator transcript levels correlating to Inhba gene dosage correspond to differences in Sertoli and germ cell numbers. In Inhba−/− testes, Cdkn1a (encoding p21cip1), identified previously in fetal gonocytes, was lower at E13.5, whereas Cdkn1b (encoding p27kip1 in somatic cells) was lower at birth, and cyclin D2 mRNA and protein were lower at E15.5 and 0 dpp. Thus, activin A dosage contributes to establishing the balance between Sertoli and germ cell number that is ultimately required for adult male fertility.


Biology of Reproduction | 2010

Fetal Testis Dysgenesis and Compromised Leydig Cell Function in Tgfbr3 (Betaglycan) Knockout Mice

Mai A. Sarraj; Ruth M. Escalona; Alexandra Umbers; Hui Kheng Chua; Chris Small; Michael D. Griswold; Kate L. Loveland; Jock K. Findlay; Kaye L. Stenvers

Abstract Betaglycan (Tgfbr3) is a coreceptor for transforming growth factor-beta (TGFB) superfamily ligands. In the current study, a defect in seminiferous cord formation was detected in 12.5–13.5 days postcoitum (dpc) betaglycan null murine testis. Immunohistochemistry with antibodies against cell-specific markers revealed defects in somatic cell populations. To confirm these data, quantitative real-time PCR was performed to determine changes in the expression levels of genes involved in fetal testis cell differentiation and function. The expression levels of the Leydig cell markers Insl3, Cyp17a1, Cyp11a1, Star, and Hsd3b1 were reduced in knockout testis compared to wild-type testis, beginning at 12.5 dpc. Whole mount in situ hybridization confirmed that Cyp11a1 expression was reduced in the null testis, but its distribution pattern was unchanged. Apoptosis was not affected by the loss of betaglycan, but proliferation within the interstitium was reduced at 14.5 dpc. However, morphometric analysis showed no changes in Leydig cell counts between the wild-type and the knockout testes at 14.5 dpc, indicating that fetal Leydig function, rather than number, was affected by the loss of betaglycan. The expression levels of Sertoli cell markers Dhh, Sox9, and Amh were also reduced in the knockout testis at 14.5 dpc. However, the expression of fetal germ cell markers Pou5f1 and DDX4 were not changed across the genotypes at any age examined. Our data show that the presence of betaglycan is required for normal cord formation, normal fetal Leydig cell development, and the establishment of fetal testis endocrine function, thus implicating TGFB superfamily members as regulators of early fetal testis structure and function.


Reproduction | 2012

Mammalian foetal ovarian development: consequences for health and disease.

Mai A. Sarraj; Ann E. Drummond

The development of a normal ovary during foetal life is essential for the production and ovulation of a high-quality oocyte in adult life. Early in embryogenesis, the primordial germ cells (PGCs) migrate to and colonise the genital ridges. Once the PGCs reach the bipotential gonad, the absence of the sex-determining region on the Y chromosome (SRY) gene and the presence of female-specific genes ensure that the indifferent gonad takes the female pathway and an ovary forms. PGCs enter into meiosis, transform into oogonia and ultimately give rise to oocytes that are later surrounded by granulosa cells to form primordial follicles. Various genes and signals are implicated in germ and somatic cell development, leading to successful follicle formation and normal ovarian development. This review focuses on the differentiation events, cellular processes and molecular mechanisms essential for foetal ovarian development in the mice and humans. A better understanding of these early cellular and morphological events will facilitate further study into the regulation of oocyte development, manifestation of ovarian disease and basis of female infertility.


Growth Factors Journal | 2007

Differential expression of TGFBR3 (betaglycan) in mouse ovary and testis during gonadogenesis

Mai A. Sarraj; Hui Kheng Chua; Alexandra Umbers; Kate L. Loveland; Jock K. Findlay; Kaye L. Stenvers

TGFBR3 is an accessory receptor that binds to and modulates the activities of both transforming growth factor-beta (TGFβ) and inhibin, two members of the TGFβ superfamily of growth factors that regulate many aspects of reproductive biology. Tgfbr3 is known to be expressed in adult testis and ovary, but little is known about this receptor during gonadogenesis. Herein, we describe Tgfbr3 expression in the male and female fetal and neonatal murine gonad. Real-time PCR analysis revealed that Tgfbr3 mRNA was expressed at higher levels in the developing testis compared to ovary. TGFBR3 was expressed within the fetal testis interstitium, predominantly by Leydig cells, but expression shifted inside the seminiferous cords at birth. In contrast, TGFBR3 was detected in both the somatic and germ cell lineages in the fetal and neonatal ovary. This differential expression pattern suggests divergent roles for this TGFBR3 in developing testis and ovary.


PLOS ONE | 2011

Betaglycan Is Required for the Establishment of Nephron Endowment in the Mouse

Kenneth A. Walker; Sunder Sims-Lucas; Georgina Caruana; Luise A. Cullen-McEwen; Jinhua Li; Mai A. Sarraj; John F. Bertram; Kaye L. Stenvers

Betaglycan is an accessory receptor for the transforming growth factor-β (TGFβ) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5–e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.


Reproduction, Fertility and Development | 2012

Expression patterns of activin, inhibin and follistatin variants in the adult male mouse reproductive tract suggest important roles in the epididymis and vas deferens

Wendy R. Winnall; Hui Wu; Mai A. Sarraj; Peter A. W. Rogers; David M. de Kretser; Jane E. Girling; Mark P. Hedger

Activin A and its inhibitors follistatin and inhibin play key roles in development and function of the male reproductive tract. Quantitative (q) polymerase chain reaction (PCR) was used to evaluate the expression of Inhba (the gene encoding activin A subunits), Inha and Inhbb (genes encoding the inhibin B subunits), as well as the genes for follistatin (Fst) and follistatin-like 3 (Fstl3) and the activin receptor subunits, in the male mouse reproductive tract. A qPCR assay that discriminated between the two follistatin variants of Fst288 (tissue-bound form) and Fst315 (circulating) was established. Activin A protein was measured by ELISA, whereas the inhibin α-subunit and total follistatin proteins were measured by radioimmunoassay (RIA). A screen of 22 tissues demonstrated tissue-specific regulation of the follistatin variants, with Fst288 highly expressed in the vas deferens and Fst315 most highly expressed in the skin. The expression of Fst288 and Fst315 and follistatin protein levels increased progressively from the testis through to the distal vas deferens. Inhba and the activin receptors were highly expressed in the epididymis, but activin A protein was elevated in both the epididymis and vas deferens. Inhibin α-subunit mRNA and protein and Inhbb expression were highest in the testis. These results indicate a role for activin A within the epididymis, but also that activin A bioactivity may be increasingly inhibited by follistatin distally along the male reproductive tract.


PLOS ONE | 2011

Estrogen-Dependent Gene Expression in the Mouse Ovary

Seng H. Liew; Mai A. Sarraj; Ann E. Drummond; Jock K. Findlay

Estrogen (E) plays a pivotal role in regulating the female reproductive system, particularly the ovary. However, the number and type of ovarian genes influenced by estrogen remain to be fully elucidated. In this study, we have utilized wild-type (WT) and aromatase knockout (ArKO; estrogen free) mouse ovaries as an in vivo model to profile estrogen dependent genes. RNA from each individual ovary (n = 3) was analyzed by a microarray-based screen using Illumina Sentrix Mouse WG-6 BeadChip (45,281 transcripts). Comparative analysis (GeneSpring) showed differential expression profiles of 450 genes influenced by E, with 291 genes up-regulated and 159 down-regulated by 2-fold or greater in the ArKO ovary compared to WT. Genes previously reported to be E regulated in ArKO ovaries were confirmed, in addition to novel genes not previously reported to be expressed or regulated by E in the ovary. Of genes involved in 5 diverse functional processes (hormonal processes, reproduction, sex differentiation and determination, apoptosis and cellular processes) 78 had estrogen-responsive elements (ERE). These analyses define the transcriptome regulated by E in the mouse ovary. Further analysis and investigation will increase our knowledge pertaining to how E influences follicular development and other ovarian functions.


International Journal of Andrology | 2011

GGN1 in the testis and ovary and its variance within the Australian fertile and infertile male population

Duangporn Jamsai; Mai A. Sarraj; Donna Jo Merriner; Ann E. Drummond; Keith T. Jones; Robert I. McLachlan; Moira K. O'Bryan

Mouse gametogenetin (Ggn) is a testis-enriched gene that encodes multiple spliced transcripts giving rise to three predicted protein isoforms: GGN1, GGN2 and GGN3. Of these, GGN1 has been linked to germ cell development. Based on the spatial and temporal expression pattern of GGN1 during mouse spermatogenesis, it has been proposed as a candidate human infertility gene. Here, we report the localization of GGN1 in the human testis and ovary compared with the mouse orthologue. Within the testis, GGN1 was confined to pachytene spermatocytes and spermatids. During mid-prophase GGN1 redistributes from a solely cytoplasmic localization to both cytoplasmic and nuclear in late prophase spermatocytes and round spermatids, and is ultimately incorporated into the sperm tail. Within both mouse and human ovaries, GGN1 was localized within granulosa cells. Lower levels of expression were observed in mouse oocytes and the cumulus cells. Furthermore, to define the level of sequence variation in the fertile population and to assess the potential for an association with male infertility, we sequenced the coding region of human GGN in 100 idiopathic oligospermic infertile and 100 control men. Fifteen genetic variants were identified, of which 10 had not previously been reported. No significant associations with fertility status were observed, suggesting that variance in the GGN gene are not a common cause of oligospermic infertility in Australian men.


Journal of Endocrinology | 2009

Extra-ovarian expression and activity of growth differentiation factor 9

Yao Wang; Peter K. Nicholls; Peter G. Stanton; Craig A. Harrison; Mai A. Sarraj; Robert B. Gilchrist; Jock K. Findlay; Paul G. Farnworth

Growth differentiation factor 9 (GDF9) produced within the ovary plays an essential role during follicle maturation through actions on granulosa cells, but extra-ovarian expression, signalling and actions of GDF9 are less well characterised. The present studies confirm GDF9 expression in the mouse testis, pituitary gland and adrenocortical cancer (AC) cells, and establish its expression in L beta T2 gonadotrophs, and in mouse adrenal glands, particularly foetal and neonatal cortical cells. AC, L beta T2, TM3 Leydig and TM4 Sertoli cells express the requisite GDF9 binding signalling components, particularly activin receptor-like kinase (ALK) 5 and the bone morphogenetic protein (BMP)/GDF type II receptor, BMPRII (BMPR2). We therefore compared GDF9 activation of these potential extra-ovarian target cell types with its activation of granulosa cells. Recombinant mouse GDF9 stimulated expression of activin/transforming growth factor-beta-responsive reporters, pGRAS-luc or pAR3-lux, in TM4 and AC cells (IC50=145 ng/ml in the latter case), and two granulosa cell lines, KGN and COV434. The ALK4/5/7 inhibitor, SB431542, blocked GDF9 activity in each case. By contrast, GDF9 lacked specific effects on TM3 cells and rat primary pituitary and mouse L beta T2 gonadotrophs. Our findings show that GDF9 regulates the expression of R-SMAD2/3-responsive reporter genes through ALK4, 5 or 7 in extra-ovarian (adrenocortical and Sertoli) cells with similar potency and signalling pathway to its actions on granulosa cells, but suggest that expression of BMPRII, ALK5 (TGFBR1) and R-SMADs 2 and 3 may not be sufficient for a cell to respond to GDF9.


Biology of Reproduction | 2013

Effects of TGFbeta2 on Wild-Type and Tgfbr3 Knockout Mouse Fetal Testis

Mai A. Sarraj; Ruth M. Escalona; Patrick S. Western; Jock K. Findlay; Kaye L. Stenvers

ABSTRACT TGFBR3 (betaglycan), a TGFbeta superfamily coreceptor, is essential for normal seminiferous cord and Leydig cell development in the fetal mouse testis and has been associated with testicular dysgenesis syndrome in men. However, the mechanisms underlying TGFBR3-regulated testis development are unclear. We tested the hypothesis that loss of Tgfbr3 compromises the functions of TGFbeta2 in the differentiating fetal testis. Analysis of expression of transcripts encoding the TGFbeta superfamily members showed a predominance of TGFbeta mRNAs during the critical window of development when testis structure is established (11.5–14.5 days postcoitum [dpc]). When cultured under basal conditions for 2 days, explants of 13.5 dpc wild-type fetal testis/mesonephros complexes exhibited structure and gene expression profiles resembling those observed in vivo between 13.5–15.5 dpc. Similarly, development of Tgfbr3 knockout testis explants recapitulated the dysgenesis and decreased somatic cell marker expression previously observed in vivo. TGFbeta2 treatment partially rescued cord development in 11.5–13.5 dpc Tgfbr3 knockout explants but did not significantly alter somatic or germ cell gene expression. In contrast, TGFbeta2 treatment of wild-type explants disrupted cord structure and significantly downregulated the somatic and steroidogenic cell markers Amh, Sf1, Star, Cyp11a, Hsd3b1, and Cyp17a1. We conclude that 1) the compromised cord development in Tgfbr3 null fetal testis is due to, at least in part, disrupted TGFbeta2 function; 2) the reduction in steroidogenesis observed in the Tgfbr3 null testis may be regulated by additional TGFBR3 ligands, rather than TGFbeta2; and 3) both cord maintenance and somatic cell development are highly sensitive to the levels of TGFbeta2.

Collaboration


Dive into the Mai A. Sarraj's collaboration.

Top Co-Authors

Avatar

Jock K. Findlay

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kaye L. Stenvers

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ruth M. Escalona

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kate L. Loveland

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Alexandra Umbers

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Hui Kheng Chua

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ann E. Drummond

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David M. de Kretser

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Hedger

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge