Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mai-He Li is active.

Publication


Featured researches published by Mai-He Li.


Plant Cell and Environment | 2008

Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

Mai-He Li; Wen-Fa Xiao; Peili Shi; San-Gen Wang; Yong-De Zhong; Xing-Liang Liu; Xiao-Dan Wang; Xiao-Hu Cai; Zuo-Min Shi

No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.


PLOS ONE | 2012

Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

Zhuwen Xu; Shiqiang Wan; Haiyan Ren; Xingguo Han; Mai-He Li; Weixin Cheng; Yong Jiang

Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.


PLOS ONE | 2012

Responses of Fine Roots and Soil N Availability to Short-Term Nitrogen Fertilization in a Broad-Leaved Korean Pine Mixed Forest in Northeastern China

Cunguo Wang; Shijie Han; Yu-Mei Zhou; Caifeng Yan; Xu-Bing Cheng; Xingbo Zheng; Mai-He Li

Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha−1 year−1) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0–20 cm soil were 13% (4.61 vs. 5.23 Mg ha−1, P<0.001) and 34% (1.39 vs. 1.86 Mg ha−1, P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0–10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.


PLOS ONE | 2013

Patterns of Plant Biomass Allocation in Temperate Grasslands across a 2500-km Transect in Northern China

Wentao Luo; Yong Jiang; Xue Wang; Mai-He Li; Edith Bai; Xingguo Han; Zhuwen Xu

Plant biomass allocation between below- and above-ground parts can actively adapt to the ambient growth conditions and is a key parameter for estimating terrestrial ecosystem carbon (C) stocks. To investigate how climatic variations affect patterns of plant biomass allocation, we sampled 548 plants belonging to four dominant genera (Stipa spp., Cleistogenes spp., Agropyron spp., and Leymus spp.) along a large-scale (2500 km) climatic gradient across the temperate grasslands from west to east in northern China. Our results showed that Leymus spp. had the lowest root/shoot ratios among the each genus. Root/shoot ratios of each genera were positively correlated with mean annual temperature (MAT), and negatively correlated with mean annual precipitation (MAP) across the transect. Temperature contributed more to the variation of root/shoot ratios than precipitation for Cleistogenes spp. (C4 plants), whereas precipitation exerted a stronger influence than temperature on their variations for the other three genera (C3 plants). From east to west, investment of C into the belowground parts increased as precipitation decreased while temperature increased. Such changes in biomass allocation patterns in response to climatic factors may alter the competition regimes among co-existing plants, resulting in changes in community composition, structure and ecosystem functions. Our results suggested that future climate change would have great impact on C allocation and storage, as well as C turnover in the grassland ecosystems in northern China.


PLOS ONE | 2012

Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit.

Wan-Ze Zhu; Min Cao; San-Gen Wang; Wen-Fan Xiao; Mai-He Li

Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides) grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height) are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC) and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l.) on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation.


Journal of Ecology | 2015

Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony

Zhuwen Xu; Haiyan Ren; Mai-He Li; Jasper van Ruijven; Xingguo Han; Shiqiang Wan; Hui Li; Qiang Yu; Yong Jiang; Lin Jiang

Summary 1. Stability is an important property of ecological systems, many of which are experiencing increasing levels of anthropogenic environmental changes. However, how these environmental changes influence ecosystem stability remains poorly understood. 2. We conducted an 8-year field experiment in a semi-arid natural grassland to explore the effects of two common environmental changes, precipitation and nitrogen enrichment, on the temporal stability of plant above-ground biomass. A split-plot design, with precipitation as the main plot factor and nitrogen as the subplot factor, was used. Temporal stability was related to potential explanatory abiotic and biotic variables using regressions and structural equation modelling. 3. Increase in growing season precipitation enhanced plant species richness and promoted temporal stability of plant above-ground biomass. Nitrogen fertilization, however, reduced both plant species richness and temporal stability of plant above-ground biomass. Contrary to expectations, species richness was not an important driver of stability. Instead, community temporal stability was mainly driven by water and nitrogen availability that modulated the degree of species asynchrony and, to a lesser extent, by the stability of dominant plant species. 4. Synthesis. Our results highlight the importance of limiting resources for regulating community biomass stability and suggest that the projected increase in growing season precipitation may potentially offset negative effects of increased atmospheric nitrogen deposition on species diversity and community stability in semi-arid grasslands.


PLOS ONE | 2014

Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China.

Wenfa Xiao; Xiaogai Ge; Lixiong Zeng; Zhilin Huang; Jing-Pin Lei; Benzhi Zhou; Mai-He Li

To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling.


PLOS ONE | 2013

Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

Yawei Wei; Mai-He Li; Hua Chen; Bernard J. Lewis; Dapao Yu; Li Zhou; Wangming Zhou; Xiangmin Fang; Wei Zhao; Limin Dai

The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.


Nature plants | 2016

Recovery of trees from drought depends on belowground sink control

Frank Hagedorn; Jobin Joseph; Martina Peter; Jörg Luster; Karin Pritsch; Uwe Geppert; René Kerner; Virginie Molinier; Simon Egli; Marcus Schaub; Jian-Feng Liu; Mai-He Li; Krunoslav Sever; Markus Weiler; Rolf T. W. Siegwolf; Arthur Gessler; Matthias Arend

Climate projections predict higher precipitation variability with more frequent dry extremes1. CO2 assimilation of forests decreases during drought, either by stomatal closure2 or by direct environmental control of sink tissue activities3. Ultimately, drought effects on forests depend on the ability of forests to recover, but the mechanisms controlling ecosystem resilience are uncertain4. Here, we have investigated the effects of drought and drought release on the carbon balances in beech trees by combining CO2 flux measurements, metabolomics and 13CO2 pulse labelling. During drought, net photosynthesis (AN), soil respiration (RS) and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, RS recovered faster than AN and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought. We propose that root restoration plays a key role in ecosystem resilience to drought, in that the increased sink activity controls the recovery of carbon balances.


Oecologia | 2014

Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought

Zhuwen Xu; Haiyan Ren; Jiangping Cai; Ruzhen Wang; Mai-He Li; Shiqiang Wan; Xingguo Han; Bernard J. Lewis; Yong Jiang

Resistance, recovery and resilience are three important properties of ecological stability, but they have rarely been studied in semi-arid grasslands under global change. We analyzed data from a field experiment conducted in a native grassland in northern China to explore the effects of experimentally enhanced precipitation and N deposition on both absolute and relative measures of community resistance, recovery and resilience—calculated in terms of community cover—after a natural drought. For both absolute and relative measures, communities with precipitation enhancement showed higher resistance and lower recovery, but no change in resilience compared to communities with ambient precipitation in the semi-arid grassland. The manipulated increase in N deposition had little effect on these community stability metrics except for decreased community resistance. The response patterns of these stability metrics to alterations in precipitation and N are generally consistent at community, functional group and species levels. Contrary to our expectations, structural equation modeling revealed that water-driven community resistance and recovery result mainly from changes in community species asynchrony rather than species diversity in the semi-arid grassland. These findings suggest that changes in precipitation regimes may have significant impacts on the response of water-limited ecosystems to drought stress under global change scenarios.

Collaboration


Dive into the Mai-He Li's collaboration.

Top Co-Authors

Avatar

Yong Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingguo Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhuwen Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wentao Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ruzhen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Caifeng Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiyan Ren

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiangping Cai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peng He

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge