Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maia R. Ermakova is active.

Publication


Featured researches published by Maia R. Ermakova.


Journal of The Optical Society of America A-optics Image Science and Vision | 2002

In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina

Werner Gellermann; Igor V. Ermakov; Maia R. Ermakova; Robert W. McClane; Da You Zhao; Paul S. Bernstein

We have used resonant Raman scattering spectroscopy as a novel, noninvasive, in vivo optical technique to measure the concentration of the macular carotenoid pigments lutein and zeaxanthin in the living human retina of young and elderly adults. Using a backscattering geometry and resonant molecular excitation in the visible wavelength range, we measure the Raman signals originating from the single- and double-bond stretch vibrations of the pi-conjugated molecules carbon backbone. The Raman signals scale linearly with carotenoid content, and the required laser excitation is well below safety limits for macular exposure. Furthermore, the signals decline significantly with increasing age in normal eyes. The Raman technique is objective and quantitative and may lead to a new method for rapid screening of carotenoid pigment levels in large populations at risk for vision loss from age-related macular degeneration, the leading cause of blindness in the elderly in the United States.


Journal of Biomedical Optics | 2005

Resonance Raman detection of carotenoid antioxidants in living human tissue

Igor V. Ermakov; Mohsen Sharifzadeh; Maia R. Ermakova; Werner Gellermann

Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with increasing age. Other carotenoids, such as lycopene and beta-carotene, play an important role as well in the protection of skin from UV and short-wavelength visible radiation. Lutein and lycopene may also have protective function for cardiovascular health, and lycopene may play a role in the prevention of prostate cancer. Motivated by the growing importance of carotenoids in health and disease, and recognizing the lack of any accepted noninvasive technology for the detection of carotenoids in living human tissue, we explore resonance Raman spectroscopy as a novel approach for noninvasive, laser optical carotenoid detection. We review the main results achieved recently with the Raman detection approach. Initially we applied the method to the detection of macular carotenoid pigments, and more recently to the detection of carotenoids in human skin and mucosal tissues. Using skin carotenoid Raman instruments, we measure the carotenoid response from the stratum corneum layer of the palm of the hand for a population of 1375 subjects and develop a portable skin Raman scanner for field studies. These experiments reveal that carotenoids are a good indicator of antioxidant status. They show that people with high oxidative stress, like smokers, and subjects with high sunlight exposure, in general, have reduced skin carotenoid levels, independent of their dietary carotenoid consumption. We find the Raman technique to be precise, specific, sensitive, and well suitable for clinical as well as field studies. The noninvasive laser technique may become a useful method for the correlation between tissue carotenoid levels and risk for malignancies or other degenerative diseases associated with oxidative stress.


Optics Letters | 2001

Resonance Raman detection of carotenoid antioxidants in living human tissues

Igor V. Ermakov; Maia R. Ermakova; Robert W. McClane; Werner Gellermann

We have used resonance Raman scattering as a novel noninvasive optical technology to measure carotenoid antioxidants in living human tissues of healthy volunteers. By use of blue-green laser excitation, clearly distinguishable carotenoid Raman spectra superimposed on a fluorescence background are obtained. The Raman spectra are obtained within less than a minute, and the required laser light exposure levels are well within safety standards. Our technique can be used for rapid screening of carotenoid levels in large populations and may have applications for assessing antioxidant status and the risk for diseases related to oxidative stress.


Journal of Biomedical Optics | 2004

Macular pigment Raman detector for clinical applications

Igor V. Ermakov; Maia R. Ermakova; Werner Gellermann; Paul S. Bernstein

Clinical studies of carotenoid macular pigments (MP) have been limited by the lack of noninvasive, objective instruments. We introduce a novel noninvasive optical instrument, an MP Raman detector, for assessment of the carotenoid status of the human retina in vivo. The instrument uses resonant excitation of carotenoid molecules in the visible wavelength range, and quantitatively measures the highly specific Raman signals that originate from the single- and double-bond stretch vibrations of the pi-conjugated carotenoid molecules carbon backbone. The instrument is a robust, compact device and suitable for routine measurements of MP concentrations in a clinical setting. We characterized and tested the instrument in clinical studies of human subjects to validate its function and to begin to establish its role as a possible screening test for macular pathologies. We also show that the MP Raman spectroscopy technology has potential as a novel, highly specific method for rapid screening of carotenoid antioxidant levels in large populations at risk for vision loss from age-related macular degeneration, the leading cause of blindness of the elderly in the developed world.


Applied Spectroscopy | 2005

Simple Raman Instrument for in Vivo Detection of Macular Pigments

Igor V. Ermakov; Maia R. Ermakova; Werner Gellermann

Raman spectroscopy holds promise as a novel noninvasive technology for the quantification of the macular pigments (MP) lutein and zeaxanthin. These compounds, which are members of the carotenoid family, are thought to prevent or delay the onset of age-related macular degeneration, the leading cause of irreversible blindness in the elderly. It is highly likely that they achieve this protection through their function as optical filters and/or antioxidants. Using resonant excitation in the visible region, we measure and quantify the Raman signals that originate from the carbon double bond (C=C) stretch vibrations of the π-conjugated molecule backbone. In this manuscript we describe the construction and performance of a novel compact MP Raman instrument utilizing dielectric angle-tuned band-pass filters for wavelength selection and a single-channel photo-multiplier for the detection of MP Raman responses. MP concentration measurements are fast and accurate, as seen in our experiments with model eyes and living human eyes. The ease and rapidity of Raman MP measurements, the simplicity of the instrumentation, the high accuracy of the measurements, and the lack of significant systematic errors should make this technology attractive for widespread clinical research.


Journal of Pediatric Gastroenterology and Nutrition | 2013

Resonance Raman spectroscopy and the preterm infant carotenoid status

Gary M. Chan; Melissa M. Chan; Werner Gellermann; Igor V. Ermakov; Maia R. Ermakova; Prakash Bhosale; Paul S. Bernstein; Carrie Rau

Objective: The aim of the study was to validate the noninvasive resonance Raman spectroscopy (RRS) method in infants in comparison with the high-performance liquid chromatography (HPLC) method, and to evaluate the carotenoid status in preterm infants fed with mothers milk or formula. Methods: In the first phase of the study, resonance Raman measurements were made on male term infants’ skin and correlated with tissue harvested at the time of circumcision. Each babys foreskin was weighed, enzymatically digested, and the total carotenoids were extracted and quantitated by the HPLC. Next, to evaluate the carotenoid status of preterm infants (BW <1500 g), the skin and serum carotenoids in infants fed with either human milk or preterm formula were studied from the start of feedings and every 2 weeks until hospital discharge. Skin carotenoids were measured by RRS and the serum total carotenoids by HPLC. Results: Foreskin carotenoid levels measured by RRS correlated with HPLC measurements of total serum carotenoids (R = 0.52, P < 0.01, n = 16). Forty preterm infants were studied for their carotenoid status. Thirty-two infants were fed mothers milk, whereas 8 were fed a preterm infant formula that was not enriched with carotenoids. The gestation and birth weight of the 2 feeding groups were similar. The infants fed human milk had a higher serum total carotenoid concentration and skin Raman counts than formula-fed infants. The skin Raman counts and total serum carotenoid correlated (R = 0.44, P = 0.01). The human milk–fed infants’ serum total carotenoid concentrations and Raman values did not change during the study period; however, the formula-fed groups total serum and skin carotenoid decreased significantly during the study. Conclusions: RRS of infants skin reliably assesses total carotenoid status noninvasively. Human milk–fed preterm infants have higher serum and skin carotenoids than formula-fed infants suggesting that formula-fed infants may benefit from carotenoid supplementation.


Journal of Biophotonics | 2012

Resonance Raman based skin carotenoid measurements in newborns and infants.

Igor V. Ermakov; Maia R. Ermakova; Paul S. Bernstein; Gary M. Chan; Werner Gellermann

We describe Resonance Raman based skin carotenoid measurements in newborns and infants. Skin- and serum carotenoid levels correlate with high statistical significance in healthy newborns and infants, and with reduced accuracy also in prematurely born infants, who in general feature very low carotenoid levels and thin transparent skin giving rise to large background absorption effects. Skin carotenoid levels can be easily compared among subjects and/or tracked in longitudinal studies with the highly molecule-specific Raman method. It therefore holds promise as a rapid, non-invasive, carotenoid antioxidant assessment method for newborns and infants in the field of pediatrics.


Journal of Biomedical Optics | 2013

Optical detection of carotenoid antioxidants in human bone and surrounding tissue

Igor V. Ermakov; Maia R. Ermakova; Thomas D. Rosenberg; Werner Gellermann

Abstract. Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.


Investigative Ophthalmology & Visual Science | 2017

Correlations Between Macular, Skin, and Serum Carotenoids

Christopher D. Conrady; Jim Bell; Brian M. Besch; Aruna Gorusupudi; Kelliann Farnsworth; Igor V. Ermakov; Mohsen Sharifzadeh; Maia R. Ermakova; Werner Gellermann; Paul S. Bernstein

Purpose Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population. Methods Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality. Skin, macular, and serum carotenoid levels were measured by RRS, AFI, and HPLC, respectively. Results Skin RRS measurements and serum zeaxanthin concentrations correlated most strongly with AFI macular pigment volume under the curve (MPVUC) measurements up to 9° eccentricity relative to MPVUC or rotationally averaged macular pigment optical density (MPOD) measurements at smaller eccentricities. These measurements were reproducible and not significantly affected by cataracts. We also found that these techniques could readily identify subjects taking oral carotenoid-containing supplements. Conclusions Larger macular pigment volume AFI and skin RRS measurements are noninvasive, objective, and reliable methods to assess ocular and systemic carotenoid levels. They are an attractive alternative to psychophysical and optical methods that measure MPOD at a limited number of eccentricities. Consequently, skin RRS and MPVUC at 9° are both reasonable biomarkers of macular carotenoid status that could be readily adapted to research and clinical settings.


Biomedical optics | 2005

Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

Igor V. Ermakov; Maia R. Ermakova; Werner Gellermann

Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

Collaboration


Dive into the Maia R. Ermakova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alisha H. Redelfs

University of Texas at El Paso

View shared research outputs
Researchain Logo
Decentralizing Knowledge