Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maider Villate is active.

Publication


Featured researches published by Maider Villate.


Nucleic Acids Research | 2009

Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease

Sylvestre Grizot; Julianne Smith; Fayza Daboussi; Jesús Prieto; Pilar Redondo; Nekane Merino; Maider Villate; Séverine Thomas; Laetitia Lemaire; Guillermo Montoya; F.J. Blanco; Frédéric Pâques; Philippe Duchateau

Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.


Nucleic Acids Research | 2011

Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus

Inés G. Muñoz; Jesús Prieto; Sunita Subramanian; Javier Coloma; Pilar Redondo; Maider Villate; Nekane Merino; Marco Marenchino; Marco D'Abramo; Francesco Luigi Gervasio; Sylvestre Grizot; Fayza Daboussi; Julianne Smith; Isabelle Chion-Sotinel; Philippe Duchateau; Andreu Alibés; François Stricher; Luis Serrano; Francisco J. Blanco; Guillermo Montoya

Homing endonucleases recognize long target DNA sequences generating an accurate double-strand break that promotes gene targeting through homologous recombination. We have modified the homodimeric I-CreI endonuclease through protein engineering to target a specific DNA sequence within the human RAG1 gene. Mutations in RAG1 produce severe combined immunodeficiency (SCID), a monogenic disease leading to defective immune response in the individuals, leaving them vulnerable to infectious diseases. The structures of two engineered heterodimeric variants and one single-chain variant of I-CreI, in complex with a 24-bp oligonucleotide of the human RAG1 gene sequence, show how the DNA binding is achieved through interactions in the major groove. In addition, the introduction of the G19S mutation in the neighborhood of the catalytic site lowers the reaction energy barrier for DNA cleavage without compromising DNA recognition. Gene-targeting experiments in human cell lines show that the designed single-chain molecule preserves its in vivo activity with higher specificity, further enhanced by the G19S mutation. This is the first time that an engineered meganuclease variant targets the human RAG1 locus by stimulating homologous recombination in human cell lines up to 265 bp away from the cleavage site. Our analysis illustrates the key features for à la carte procedure in protein-DNA recognition design, opening new possibilities for SCID patients whose illness can be treated ex vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase is a Distant Ipk Member with a Singular Inositide Binding Site for Axial 2-Oh Recognition.

Beatriz González; Jose Ignacio Baños-Sanz; Maider Villate; Charles A. Brearley; Julia Sanz-Aparicio

Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates.


Nature Communications | 2015

Structure of p15 PAF –PCNA complex and implications for clamp sliding during DNA replication and repair

Alfredo De Biasio; Alain Ibáñez de Opakua; Gulnahar B. Mortuza; Rafael Molina; Tiago N. Cordeiro; Francisco Castillo; Maider Villate; Nekane Merino; Sandra Delgado; David Gil-Cartón; Irene Luque; Tammo Diercks; Pau Bernadó; Guillermo Montoya; Francisco J. Blanco

The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15(PAF) tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15(PAF) also contacts the inside of, and passes through, the PCNA ring. The disordered p15(PAF) termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.


PLOS ONE | 2011

Reduced stability and increased dynamics in the human proliferating cell nuclear antigen (PCNA) relative to the yeast homolog.

Alfredo De Biasio; Ricardo Sánchez; Jesús Prieto; Maider Villate; Ramón Campos-Olivas; Francisco J. Blanco

Proliferating Cell Nuclear Antigen (PCNA) is an essential factor for DNA replication and repair. PCNA forms a toroidal, ring shaped structure of 90 kDa by the symmetric association of three identical monomers. The ring encircles the DNA and acts as a platform where polymerases and other proteins dock to carry out different DNA metabolic processes. The amino acid sequence of human PCNA is 35% identical to the yeast homolog, and the two proteins have the same 3D crystal structure. In this report, we give evidence that the budding yeast (sc) and human (h) PCNAs have highly similar structures in solution but differ substantially in their stability and dynamics. hPCNA is less resistant to chemical and thermal denaturation and displays lower cooperativity of unfolding as compared to scPCNA. Solvent exchange rates measurements show that the slowest exchanging backbone amides are at the β-sheet, in the structure core, and not at the helices, which line the central channel. However, all the backbone amides of hPCNA exchange fast, becoming undetectable within hours, while the signals from the core amides of scPCNA persist for longer times. The high dynamics of the α-helices, which face the DNA in the PCNA-loaded form, is likely to have functional implications for the sliding of the PCNA ring on the DNA since a large hole with a flexible wall facilitates the establishment of protein-DNA interactions that are transient and easily broken. The increased dynamics of hPCNA relative to scPCNA may allow it to acquire multiple induced conformations upon binding to its substrates enlarging its binding diversity.


PLOS ONE | 2012

Proliferating cell nuclear antigen (PCNA) interactions in solution studied by NMR.

Alfredo De Biasio; Ramón Campos-Olivas; Ricardo Sánchez; Jorge P. López-Alonso; David Pantoja-Uceda; Nekane Merino; Maider Villate; Jose M. Martin-Garcia; Francisco Javier Luque Castillo; Irene Luque; Francisco J. Blanco

PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box). We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL) and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.


mAbs | 2012

Improved stability of multivalent antibodies containing the human collagen XV trimerization domain.

Ángel M. Cuesta; David Sánchez-Martín; Ana Blanco-Toribio; Maider Villate; Kelly Enciso-Álvarez; Ana Álvarez-Cienfuegos; Noelia Sainz-Pastor; Laura Sanz; Francisco J. Blanco; Luis Álvarez-Vallina

We recently described the in vitro and in vivo properties of an engineered homotrimeric antibody made by fusing the N-terminal trimerization region of collagen XVIII NC1 domain to the C-terminus of a scFv fragment [trimerbody (scFv-NC1)3; 110 kDa]. Here, we demonstrated the utility of the N-terminal trimerization region of collagen XV NC1 domain in the engineering of trivalent antibodies. We constructed several scFv-based trimerbodies containing the human type XV trimerization domain and demonstrated that all the purified trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Importantly, type XV trimerbodies demonstrated substantially greater thermal and serum stability and resistance to protease digestion than type XVIII trimerbodies. In summary, the small size, high expression level, solubility and stability of the trimerization domain of type XV collagen make it the ideal choice for engineering homotrimeric antibodies for cancer detection and therapy.


Journal of Biological Chemistry | 2012

Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins.

Simone Culurgioni; Inés G. Muñoz; Alberto Moreno; Alicia Palacios; Maider Villate; Ignacio Palmero; Guillermo Montoya; F.J. Blanco

Background: The tumor suppressor ING4 binds to chromatin with the H3K4me3 mark. Results: The structure of the ING4 dimerization domain was solved. Monomeric mutants did not enhance apoptosis in response to DNA damage. Conclusion: ING4 forms an antiparallel coiled coil, and dimerization is essential for apoptosis and growth inhibition. Significance: The structure and function of ING proteins are relevant for chromatin structure and cancer. The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.


PLOS ONE | 2012

The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

Patricia Santos-Valle; Irene Guijarro-Muñoz; Ángel M. Cuesta; Vanesa Alonso-Camino; Maider Villate; Ana Álvarez-Cienfuegos; Francisco J. Blanco; Laura Sanz; Luis Álvarez-Vallina

Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.


Scientific Reports | 2016

Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

Ana Álvarez-Cienfuegos; Natalia Nuñez-Prado; Marta Compte; Ángel M. Cuesta; Ana Blanco-Toribio; Seandean Lykke Harwood; Maider Villate; Nekane Merino; Jaume Bonet; Rocío Navarro; Clara Muñoz-Briones; Karen Marie Juul Sørensen; Kasper Mølgaard; Baldo Oliva; Laura Sanz; F.J. Blanco; Luis Álvarez-Vallina

Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas.

Collaboration


Dive into the Maider Villate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Ibáñez de Opakua

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

F.J. Blanco

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Molina

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alfredo De Biasio

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Blanco-Toribio

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge