Maija Dambrova
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maija Dambrova.
Trends in Cardiovascular Medicine | 2002
Maija Dambrova; Edgars Liepinsh; Ivars Kalvinsh
Mildronate [3-(2,2,2-trimethylhydrazinium)propionate dihydrate] ameliorates cardiac function during ischemia by modulating myocardial energy metabolism. Biochemical and pharmacological evidence supports the hypothesis that the mechanism of action of mildronate is based on its regulatory effect on carnitine concentration, whereby mildronate treatment shifts the myocardial energy metabolism from fatty acid oxidation to the more favorable glucose oxidation under ischemic conditions. Because mildronate treatment prepares cellular metabolism and membrane structures to survive ischemic stress conditions, it is possible that mildronate could be regarded as an agent of pharmacological preconditioning.
Journal of Cardiovascular Pharmacology | 2006
Edgars Liepinsh; Reinis Vilskersts; Dagnija Loca; Olga Kirjanova; Osvalds Pugovichs; Ivars Kalvinsh; Maija Dambrova
Abstract: The inhibition of gamma-butyrobetaine (GBB) hydroxylase, a key enzyme in the biosynthesis of carnitine, contributes to lay ground for the cardioprotective mechanism of action of mildronate. By inhibiting the biosynthesis of carnitine, mildronate is supposed to induce the accumulation of GBB, a substrate of GBB hydroxylase. This study describes the changes in content of carnitine and GBB in rat plasma and heart tissues during long-term (28 days) treatment of mildronate [i.p. (intraperitoneal) 100 mg/kg/daily]. Obtained data show that in concert with a decrease in carnitine concentration, the administration of mildronate caused a significant increase in GBB concentration. We detected about a 5-fold increase in GBB contents in the plasma and brain and a 7-fold increase in the heart. In addition, we tested the cardioprotective effect of mildronate in isolated rat heart infarction model after 3, 7, and 14 days of administration. We found a statistically significant decrease in necrotic area of infarcted rat hearts after 14 days of treatment with mildronate. The cardioprotective effect of mildronate correlated with an increase in GBB contents. In conclusion, our study, for the first time, provides experimental evidence that the long-term administration of mildronate not only decreases free carnitine concentration, but also causes a significant increase in GBB concentration, which correlates with the cardioprotection of mildronate.
British Journal of Pharmacology | 2009
Edgars Liepinsh; Reinis Vilskersts; Liga Zvejniece; Baiba Svalbe; Elina Skapare; Janis Kuka; Helena Cirule; Solveiga Grinberga; Ivars Kalvinsh; Maija Dambrova
Background and purpose: Mildronate [3‐(2,2,2‐trimethylhydrazinium) propionate] is an anti‐ischaemic drug whose mechanism of action is based on its inhibition of L‐carnitine biosynthesis and uptake. As L‐carnitine plays a pivotal role in the balanced metabolism of fatty acids and carbohydrates, this study was carried out to investigate whether long‐term mildronate treatment could influence glucose levels and prevent diabetic complications in an experimental model of type 2 diabetes in Goto‐Kakizaki (GK) rats.
Life Sciences | 2008
Edgars Liepinsh; Reinis Vilskersts; Elina Skapare; Baiba Svalbe; Janis Kuka; Helena Cirule; Osvalds Pugovics; Ivars Kalvinsh; Maija Dambrova
AIMS l-carnitine has been shown to play a central role in both fat and carbohydrate metabolisms. This study investigated whether acute and long-term treatments with an l-carnitine biosynthesis inhibitor, mildronate (3-(2,2,2-trimethylhydrazinium) propionate), modulate glucose uptake. MAIN METHODS The effects of acute and long-term administration of mildronate at a dose of 200 mg/kg (i.p. daily for 20 days) were tested in mouse blood plasma and heart. KEY FINDINGS Acute administration of mildronate in vivo, or in vitro administration with perfusion buffer in isolated heart experiments, did not induce any effects on glucose blood concentration and uptake in the heart. Mildronate long-term treatment significantly decreased carnitine concentration in plasma and heart tissues, as well as increased the rate of insulin-stimulated glucose uptake by 35% and the expression of glucose transporter 4, hexokinase II, and insulin receptor proteins in mouse hearts. In addition, expression of both carnitine palmitoyltransferases IA and IB were significantly increased. Mildronate long-term treatment statistically significantly decreased fed state blood glucose from 6+/-0.2 to 5+/-0.1 mM, but did not affect plasma insulin and C-peptide levels. SIGNIFICANCE Our experiments demonstrate for the first time that long-term mildronate treatment decreases carnitine content in the mouse heart and leads to increased glucose uptake and glucose metabolism-related gene expression.
Experimental and Clinical Endocrinology & Diabetes | 2016
Maija Dambrova; Gustavs Latkovskis; Janis Kuka; Ieva Strele; Ilze Konrade; Solveiga Grinberga; Dace Hartmane; Osvalds Pugovics; A. Erglis; Edgars Liepinsh
Recent studies have revealed strong associations between systemic trimethylamine N-oxide (TMAO) levels, atherosclerosis and cardiovascular risk. In addition, plasma L-carnitine levels in patients with high TMAO concentrations predicted an increased risk for cardiovascular disease and incident major adverse cardiac events. The aim of the present study was to investigate the relation between TMAO and L-carnitine plasma levels and diabetes. Blood plasma samples were collected from 12 and 20 weeks old db/db mice and patients undergoing percutaneous coronary intervention. Diabetic compared to non-diabetic db/L mice presented 10-fold higher TMAO, but lower L-carnitine plasma concentrations at 12 weeks of age. After 8 weeks of observation, diabetic db/db mice had significantly increased body weight, insulin resistance and TMAO concentration in comparison to non-diabetic control. In 191 patients undergoing percutaneous coronary intervention the median (interquartile range) plasma concentration of TMAO was 1.8 (1.2-2.6) µmol/L. Analysis of the samples showed a bivariate association of TMAO level with age, total cholesterol and L-carnitine. The multivariate linear regression analysis revealed that, in addition to L-carnitine as the strongest predictor of log transformed TMAO (p<0.001), the parameters of age, diabetes status and body mass index (BMI) were independently associated with increased log transformed TMAO levels (p<0.01).Our data provide evidence that age, diabetes and BMI are associated with higher TMAO levels independently of L-carnitine. These data support the hypothesis of TMAO as a cardiovascular risk marker and warrant further investigation of TMAO for diabetes research applications.
Metabolism-clinical and Experimental | 2014
Edgars Liepinsh; Marina Makrecka; Janis Kuka; Elina Makarova; Reinis Vilskersts; Helena Cirule; Eduards Sevostjanovs; Solveiga Grinberga; Osvalds Pugovics; Maija Dambrova
OBJECTIVE A variety of calorie restriction diets and fasting regimens are popular among overweight people. However, starvation could result in unexpected cardiovascular effects. Therefore, it is necessary to evaluate the short-term effects of diets on cardiovascular function, energy metabolism and potential risk of heart damage in case of myocardial infarction. The objective of the present study was to investigate whether the increased level of glucose oxidation or reduction of fatty acid (FA) load in the fed state provides the basis for protection against myocardial infarction in an experimental rat model of ischemia-reperfusion. MATERIALS/METHODS We tested the effects of the availability of energy substrates and their metabolites on the heart functionality and energy metabolism under normoxic and ischemia-reperfusion conditions. RESULTS In a fasted state, the heart draws energy exclusively from FAs, whereas in a fed state, higher concentration of circulating insulin ensures a partial switch to glucose oxidation, while the load of FA on heart and mitochondria is reduced. Herein, we demonstrate that ischemic damage in hearts isolated from Wistar rats and diabetic Goto-Kakizaki rats is significantly lower in the fed state compared to the fasted state. CONCLUSIONS Present findings indicate that postprandial or fed-state physiology, which is characterised by insulin-activated glucose and lactate utilisation, is protective against myocardial infarction. Energy metabolism pattern in the heart is determined by insulin signalling and the availability of FAs. Overall, our study suggests that even overnight fasting could provoke and aggravate cardiovascular events and high-risk cardiovascular patients should avoid prolonged fasting periods.
Life Sciences | 2014
Janis Kuka; Edgars Liepinsh; Marina Makrecka-Kuka; Janis Liepins; Helena Cirule; Daina Gustina; Einars Loza; Olga Zharkova-Malkova; Solveiga Grinberga; Osvalds Pugovics; Maija Dambrova
AIMS Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. MAIN METHODS Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested. KEY FINDINGS Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased. SIGNIFICANCE We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.
European Journal of Pharmacology | 2008
Maija Dambrova; Liga Zvejniece; Edgars Liepinsh; Helena Cirule; Olga Zharkova; Grigory Veinberg; Ivars Kalvinsh
Phenibut (3-phenyl-4-aminobutyric acid) is a GABA (gamma-aminobutyric acid)-mimetic psychotropic drug which is clinically used in its racemic form. The aim of the present study was to compare the effects of racemic phenibut and its optical isomers in pharmacological tests and GABAB receptor binding studies. In pharmacological tests of locomotor activity, antidepressant and pain effects, S-phenibut was inactive in doses up to 500 mg/kg. In contrast, R-phenibut turned out to be two times more potent than racemic phenibut in most of the tests. In the forced swimming test, at a dose of 100 mg/kg only R-phenibut significantly decreased immobility time. Both R-phenibut and racemic phenibut showed analgesic activity in the tail-flick test with R-phenibut being slightly more active. An GABAB receptor-selective antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348) inhibited the antidepressant and antinociceptive effects of R-phenibut, as well as locomotor depressing activity of R-phenibut in open field test in vivo. The radioligand binding experiments using a selective GABAB receptor antagonist [3H]CGP54626 revealed that affinity constants for racemic phenibut, R-phenibut and reference GABA-mimetic baclofen were 177+/-2, 92+/-3, 6.0+/-1 microM, respectively. We conclude that the pharmacological activity of racemic phenibut relies on R-phenibut and this correlates to the binding affinity of enantiomers of phenibut to the GABAB receptor.
Pharmacology | 2009
Reinis Vilskersts; Edgars Liepinsh; Lukasz Mateuszuk; Solveiga Grinberga; Ivars Kalvinsh; Stefan Chlopicki; Maija Dambrova
Background/Aims: Mildronate, an inhibitor of L-carnitine biosynthesis and transport, is used in clinics as a modulator of cellular energy metabolism and is a cardioprotective drug. L-Carnitine is a pivotal molecule in fatty acid oxidation pathways and its regulation in vasculature might be a promising approach for antiatherosclerotic treatment. This study was performed to evaluate the effects of mildronate treatment on the progression of atherosclerosis and the content of L-carnitine in the vascular wall. Methods: ApoE/LDLR–/– mice received mildronate at doses of 30 and 100 mg/kg for 4 months. Lipid profile was measured in plasma and atherosclerotic lesions were analyzed in whole aorta and aortic sinus. L-Carnitine concentration was assessed in rat aortic tissues after 2 weeks of treatment with mildronate at a dose of 100 mg/kg. Results: The chronic treatment with mildronate at a dose of 100 mg/kg significantly reduced the size of atherosclerotic plaques in the aortic roots and in the whole aorta, and slightly decreased the free cholesterol level. In addition, mildronate treatment decreased L-carnitine concentration in rat aortic tissues. Conclusions: Long-term mildronate treatment decreases L-carnitine content in aortic tissues and attenuates the development of atherosclerosis in apoE/LDLR–/– mice.
Journal of Cardiovascular Pharmacology and Therapeutics | 2012
Janis Kuka; Reinis Vilskersts; Helena Cirule; Marina Makrecka; Osvalds Pugovics; Ivars Kalvinsh; Maija Dambrova; Edgars Liepinsh
Mildronate, an inhibitor of l-carnitine biosynthesis and uptake, is a cardioprotective drug whose mechanism of action is thought to rely on the changes in concentration of l-carnitine in heart tissue. In the present study, we compared the cardioprotective effect of mildronate (100 mg/kg) and a combination of mildronate and l-carnitine (100 + 100 mg/kg) administered for 14 days with respect to the observed changes in l-carnitine level and carnitine palmitoyltransferase I (CPT-I)-dependent fatty acid metabolism in the heart tissues. Concentrations of l-carnitine and its precursor γ-butyrobetaine (GBB) were measured by ultraperformance liquid chromatography with tandem mass spectrometry. In addition, mitochondrial respiration, activity of CPT-I, and expression of CPT-IA/B messenger RNA (mRNA) were measured. Isolated rat hearts were subjected to ischemia–reperfusion injury. Administration of mildronate induced a 69% decrease in l-carnitine concentration and a 6-fold increase in GBB concentration in the heart tissue as well as a 27% decrease in CPT-I-dependent mitochondrial respiration on palmitoyl-coenzyme A. In addition, mildronate treatment induced a significant reduction in infarct size and also diminished the ischemia-induced respiration stimulation by exogenous cytochrome c. Treatment with a combination had no significant impact on l-carnitine concentration, CPT-I-dependent mitochondrial respiration, and infarct size. Our results demonstrated that the mildronate-induced decrease in l-carnitine concentration, concomitant decrease in fatty acid transport, and maintenance of the intactness of outer mitochondrial membrane in heart mitochondria are the key mechanisms of action for the anti-infarction activity of mildronate.