Maik Heidemeier
Bielefeld University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maik Heidemeier.
Inorganic Chemistry | 2009
Thorsten Glaser; Maik Heidemeier; Erich Krickemeyer; Hartmut Bögge; Anja Stammler; Roland Fröhlich; Eckhard Bill; Jürgen Schnack
The reaction of the tris(tetradentate) triplesalen ligand H6talen(t-Bu2), which provides three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone, with Mn(II) salts under aerobic conditions affords, in situ, the trinuclear Mn(III) triplesalen complexes [(talen(t-Bu2)){Mn(III)(solv)n}3]3+. These can be used as molecular building blocks in the reaction with [Fe(CN)6]3- as a hexaconnector to form the heptanuclear complex [{(talen(t-Bu2)){Mn(III)(solv)n}3}2{Fe(III)(CN)6}]3+ ([Mn(III)6Fe(III)]3+). The regular ligand folding observed in the trinuclear triplesalen complexes preorganizes the three metal ions for the reaction of three facially coordinated nitrogen atoms of a hexacyanometallate and provides a driving force for the formation of the heptanuclear complexes [M(t)6M(c)]n+ (M(t), terminal metal ion of the triplesalen building block; M(c), central metal ion of the hexacyanometallate) by molecular recognition, as has already been demonstrated for the single-molecule magnet [Mn(III)6Cr(III)]3+. [{(talen(t-Bu2))(Mn(III)(MeOH))3}2{Fe(III)(CN)6}][Fe(III)(CN)6] (1) was characterized by single-crystal X-ray diffraction, FTIR, ESI- and MALDI-TOF-MS, Mössbauer spectroscopy, and magnetic measurements. The molecular structure of [Mn(III)6Fe(III)]3+ is overall identical to that of [Mn(III)6Cr(III)]3+ but exhibits a different ligand folding of the Mn(III) salen subunits with a helical distortion. The Mössbauer spectra demonstrate a stronger distortion from octahedral symmetry for the central [Fe(CN)6]3- in comparison to the ionic [Fe(CN)6]3-. At low temperatures in zero magnetic fields, the Mössbauer spectra show magnetic splittings indicative of slow relaxation of the magnetization on the Mössbauer time scale. Variable-temperature-variable-field and mu(eff) versus T magnetic data have been analyzed in detail by full-matrix diagonalization of the appropriate spin-Hamiltonian, consisting of isotropic exchange, zero-field splitting, and Zeeman interaction taking into account the relative orientation of the D tensors. Satisfactory reproduction of the experimental data has been obtained for parameters sets J(Mn-Mn) = -(0.85 +/- 0.15) cm(-1), J(Fe-Mn) = +(0.70 +/- 0.30) cm(-1), and D(Mn) = -(3.0 +/- 0.7) cm(-1). Comparing these values to those of [Mn(III)6Cr(III)]3+ provides insight into why [Mn(III)6Fe(III)]3+ is not a single-molecule magnet.
Inorganic Chemistry | 2012
Veronika Hoeke; Maik Heidemeier; Erich Krickemeyer; Anja Stammler; Hartmut Bögge; Jürgen Schnack; A. V. Postnikov; Thorsten Glaser
The structural, spectroscopic, and magnetic properties of a series of [Mn(III)(6)Cr(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+)) compounds have been investigated by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and electronic absorption spectroscopy, elemental analysis, electro spray ionization-mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), cyclic voltammetry, AC and DC magnetic measurements, as well as theoretical analysis. The crystal structures obtained with [Cr(III)(CN)(6)](3-) as a counterion exhibit (quasi-)one-dimensional (1D) chains formed by hydrogen-bonded (1) or covalently linked (2) trications and trianions. The rod-shaped anion lactate enforces a rod packing of the [Mn(III)(6)Cr(III)](3+) complexes in the highly symmetric space group R3[overline] (3) with a collinear arrangement of the molecular S(6) axes. Incorporation of the spherical anion BPh(4)(-) leads to less-symmetric crystal structures (4-6) with noncollinear orientations of the [Mn(III)(6)Cr(III)](3+) complexes, as evidenced by the angle between the approximate molecular C(3) axes taking no specific values in the range of 2°-69°. AC magnetic measurements on freshly isolated crystals (1a and 3a-6a), air-dried crystals (3b-6b), and vacuum-dried powder samples (3c-6c) indicate single-molecule magnet (SMM) behavior for all samples with U(eff) values up to 28 K. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting, and Zeeman interaction, taking into account the relative orientation of the D-tensors. Simulations for 3a-6a and 3c-6c indicate a weak antiferromagnetic exchange between the Mn(III) ions in the trinuclear subunits (J(Mn-Mn) = -0.70 to -0.85 cm(-1), Ĥ(ex) = -2∑(i<j )J(ij)Ŝ(i)·Ŝ(j)) that is overcome by the stronger antiferromagnetic interaction via the Cr-C≡N-Mn pathway (J(Cr-Mn) = -3.00 to -5.00 cm(-1)), leading to an overall ferrimagnetic coupling scheme with an S(t) = (21)/(2) spin ground state. The differences in U(eff), J(Mn-Mn), and J(Cr-Mn) for the investigated samples are rationalized in terms of subtle variations in the molecular and crystal structures. In particular, a magnetostructural correlation between the Mn-N(C≡N) bond length and the J(Cr-Mn) exchange coupling is inferred from the magnetic measurements and corroborated by DFT calculations. The results of this detailed study on [Mn(III)(6)Cr(III)](3+) allow the formulation of some key recipes for a rational improvement of the SMM behavior.
Chemical Science | 2012
Veronika Hoeke; Klaus Gieb; Paul Müller; Liviu Ungur; Liviu F. Chibotaru; Maik Heidemeier; Erich Krickemeyer; Anja Stammler; Hartmut Bögge; Christian Schröder; Jürgen Schnack; Thorsten Glaser
We have synthesized the triplesalen-based single-molecule magnet (SMM) [MnIII6MnIII]3+ as a variation of our SMM [MnIII6CrIII](BPh4)3. The use of the rod-shaped anion lactate (lac) was intended to enforce a rod packing and resulted in the crystallization of [MnIII6MnIII](lac)3 in the highly symmetric space group R. This entails a crystallographic S6 symmetry of the [MnIII6MnIII]3+ molecules, which in addition are all aligned with the crystallographic c axis. Moreover, the molecular environment of each [MnIII6MnIII]3+ molecule is highly symmetric. Single-crystals of [MnIII6MnIII](lac)3 exhibit a double hysteresis at 0.3 K with a hysteretic opening not only for the spin ground state up to 1.8 T, but also for an excited state becoming the ground state at ≈ 3.4 T with a hysteretic opening up to 10 T. Ab initio calculations including spin-orbit coupling establish a non-magnetic behavior of the central MnIII low-spin (l.s.) ion at low temperatures, demonstrating that predictions from ligand-field theory are corroborated in the case of MnIII l.s. by ab intio calculations. Simulations of the field- and temperature-dependent magnetization data indicate that [MnIII6MnIII]3+ is in the limit of weak exchange (J ≪ D) with antiferromagnetic interactions in the trinuclear MnIII3 triplesalen subunits resulting in intermediate S* = 2 spins. Slight ferromagnetic interactions between the two trinuclear MnIII3 subunits lead to a ground state in zero-field that is approximately described by a total spin quantum number S = 4. This ground state exhibits only a very small anisotropy barrier due to the misalignment of the local zero-field splitting tensors. At higher magnetic fields of ≈ 3.4 T, the spin configuration changes to an all-up orientation of the local MnIII spins, with the main part of the Zeeman energy needed for the spin-flip being required to overcome the local MnIII anisotropy barriers, while only minor contributions of the Zeeman energy are needed to overcome the antiferromagnetic interactions. These combined theoretical analyses provide a clear picture of the double-hysteretic behavior of the [MnIII6MnIII]3+ single-molecule magnet with hysteretic openings up to 10 T.
Zeitschrift für Naturforschung B | 2006
Thorsten Glaser; Maik Heidemeier; Erich Krickemeyer; Hartmut Bögge
As part of our synthetic efforts for new triplesalen derivatives, we reacted 2,4,6-triacetyl- 1,3,5-trihydroxybenzene (1) with excess Cu(ClO4)2 · 6H2O, imidazole, and ethylenediamine. However, not the triple ketimine derivative was formed but the mononuclear CuII complex [LCuII(ImH)]ClO4 · 0.5EtOH · 0.5H2O (HL = 6-(1-(2-aminoethylimino)ethyl)-2,4-diacetyl-1,3,5-trihydroxybenzene) with only one ketimine function. This complex forms a one-dimensional coordination polymer in the solid state through the apical binding of a keto-oxygen atom of one cation to the CuII ion of a neighboring cation. Magnetic measurements reveal the presence of weak antiferromagnetic intra-chain interactions
Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences | 2003
Thorsten Glaser; Maik Heidemeier; F. Ekkehardt Hahn; Tania Pape; Thomas Lügger
The reaction of Cu(ClO4)2·6H2O, imidazole (ImH), and ethylenediamine (en) in a 1 : 2 : 1 ratio afforded in high yield dark-blue single-crystals of [(en)CuII(ImH)2](ClO4)2, 1, which can be used after deprotonation as a building block for heterometallic ferrimagnetic chains. The structural and electronic properties of 1 were examined by X-ray crystallography, FTIR, ESI-MS, electrochemistry, UV/vis/NIR, EPR, and magnetic susceptibility measurements. The structure of 1 exhibits intermolecular π-π interactions and hydrogen bonds but the magnetic data exclude the presence of intermolecular exchange interactions.
Angewandte Chemie | 2006
Thorsten Glaser; Maik Heidemeier; Thomas Weyhermüller; Rolf‐Dieter Hoffmann; Holger Rupp; Paul Müller
Inorganic Chemistry | 2005
Thorsten Glaser; Maik Heidemeier; Roland Fröhlich; Peter Hildebrandt; Eberhart Bothe; Eckhard Bill
Chemistry: A European Journal | 2007
Thorsten Glaser; Maik Heidemeier; Julia B. H. Strautmann; Hartmut Bögge; Anja Stammler; Erich Krickemeyer; Robert Huenerbein; Stefan Grimme; Eberhard Bothe; Eckhard Bill
Inorganic Chemistry | 2004
Thorsten Glaser; Maik Heidemeier; Stefan Grimme; Eckhard Bill
Comptes Rendus Chimie | 2007
Thorsten Glaser; Maik Heidemeier; Roland Fröhlich