Maika Genz
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maika Genz.
Nature Chemistry | 2016
Ioannis V. Pavlidis; Martin S. Weiß; Maika Genz; Paul Spurr; Steven Paul Hanlon; Beat Wirz; Hans Iding; Uwe T. Bornscheuer
The use of transaminases to access pharmaceutically relevant chiral amines is an attractive alternative to transition-metal-catalysed asymmetric chemical synthesis. However, one major challenge is their limited substrate scope. Here we report the creation of highly active and stereoselective transaminases starting from fold class I. The transaminases were developed by extensive protein engineering followed by optimization of the identified motif. The resulting enzymes exhibited up to 8,900-fold higher activity than the starting scaffold and are highly stereoselective (up to >99.9% enantiomeric excess) in the asymmetric synthesis of a set of chiral amines bearing bulky substituents. These enzymes should therefore be suitable for use in the synthesis of a wide array of potential intermediates for pharmaceuticals. We also show that the motif can be engineered into other protein scaffolds with sequence identities as low as 70%, and as such should have a broad impact in the field of biocatalytic synthesis and enzyme engineering.
Journal of Biotechnology | 2015
Sandy Schmidt; Maika Genz; Kathleen Balke; Uwe T. Bornscheuer
Baeyer-Villiger monooxygenases (BVMO) belong to the class B of flavin-dependent monooxygenases (type I BVMOs) and catalyze the oxidation of (cyclic) ketones into esters and lactones. The prototype BVMO is the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871. This enzyme shows an impressive substrate scope with a high chemo-, regio- and/or enantioselectivity. BVMO reactions are often difficult, if not impossible to achieve by chemical approaches and this makes these enzymes thus highly desired candidates for industrial applications. Unfortunately, the industrial use is hampered by several factors related to the lack of stability of these biocatalysts. Thus, the aim of this study was to improve the CHMOs long-term stability, one of the most relevant parameter for biocatalytic processes, and additionally its stability against oxidation. We used an easy computational method for the prediction of stabilizing disulfide bonds in the CHMO-scaffold. The three most promising predicted disulfide pairs were created and biochemically characterized. The most oxidatively stable variant (Y411C-A463C) retained nearly 60% activity after incubation with 25 mM H2O2 whereas the wild type retained only 16%. In addition, one extra disulfide pair (T415C-A463C) was created and tested for increased stability. The melting temperature (Tm) of this variant was increased by 5°C with simultaneous improved long-term stability. After verification by ABD-F labeling that this mutant does not form a disulfide bond, single and double Cys/Ser mutants were prepared and investigated. Subsequent analysis revealed that the T415C single point variant is the most stable variant with a 30-fold increased long-term stability (33% residual activity after 24h incubation at 25°C) showcasing a great achievement for practical applications.
Journal of Peptide Science | 2010
David Singer; Thomas Zauner; Maika Genz; Ralf Hoffmann; Thole Zuchner
Huntingtons disease (HD) is a neurodegenerative disorder that affects approximately 1 in 10 000 individuals. The underlying gene mutation was identified as a CAG‐triplet repeat expansion in the gene huntingtin. The CAG sequence codes for glutamine, and in HD, an expansion of the polyglutamine (poly‐Q) stretch above 35 glutamine residues results in pathogenicity. It has been demonstrated in various animal models that only the expression of exon 1 huntingtin, a 67‐amino acid‐long polypeptide plus a variable poly‐Q stretch, is sufficient to cause full HD‐like pathology. Therefore, a deeper understanding of exon 1 huntingtin, its structure, aggregation mechanism and interaction with other proteins is crucial for a better understanding of the disease. Here, we describe the synthesis of a 109‐amino acid‐long exon 1 huntingtin peptide including a poly‐Q stretch of 42 glutamines. This microwave‐assisted solid phase peptide synthesis resulted in milligram amounts of peptide with high purity. We also synthesized a nonpathogenic version of exon 1 huntingtin (90‐amino acid long including a poly‐Q stretch of 23 glutamine residues) using the same strategy. In circular dichroism spectroscopy, both polypeptides showed weak alpha‐helical properties with the longer peptide showing a higher helical degree. These model peptides have great potential for further biomedical analyses, e.g. for large‐scale pre‐screenings for aggregation inhibitors, further structural analyses as well as protein–protein interaction studies. Copyright
Chemcatchem | 2016
Maika Genz; Okke Melse; Sandy Schmidt; Clare Vickers; Mark Dörr; Tom van den Bergh; Henk-Jan Joosten; Uwe T. Bornscheuer
Chiral amines are important building blocks, especially for the pharmaceutical industry. Although amine transaminases (ATAs) are versatile enzymes to synthesize chiral amines, the wildtype enzymes do not accept ketones with two large substituents next to the carbonyl functionality. Using bioinformatic tools to design a seven‐site mutant library followed by high‐throughput screening, we were able to identify variants of the enzyme from Vibrio fluvialis (VF‐ATA) with a widened binding pocket, as exemplified for a range of ketones. Three variants allowed the asymmetric synthesis of 2,2‐dimethyl‐1‐phenylpropan‐1‐amine—not accessible by any wildtype ATA described so far. The best variant containing four mutations (L56V, W57C, F85V, V153A) gave 100 % conversion of the ketone to yield the amine with an enantiomeric excess value >99 %, notably with preference for the (R)‐enantiomer. In silico modeling enabled the reconstruction of the substrate binding mode to the newly evolved pocket and, hence, allowed explanation of the experimental results.
International Journal of Molecular Sciences | 2015
Maika Genz; Clare Vickers; Tom van den Bergh; Henk-Jan Joosten; Mark Dörr; Matthias Höhne; Uwe T. Bornscheuer
To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.
Chemcatchem | 2014
Maika Genz; Valentin Köhler; Michael Krauss; David Singer; Ralf Hoffmann; Thomas R. Ward; Norbert Sträter
Dative anchoring of a piano‐stool complex within ribonuclease S resulted in an artificial imine reductase. The catalytic performance was modulated upon variation of the coordinating amino acid residues in the S‐peptide. Binding of Cp*Ir (Cp*=C5Me5) to the native active site resulted in good conversions and moderate enantiomeric excess values for the synthesis of salsolidine.
ChemBioChem | 2016
Andy Beier; Sven Bordewick; Maika Genz; Sandy Schmidt; Tom van den Bergh; Christin Peters; Henk-Jan Joosten; Uwe T. Bornscheuer
Baeyer–Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to esters or lactones by using molecular oxygen and a cofactor. Type I BVMOs display a strong preference for NADPH. However, for industrial purposes NADH is the preferred cofactor, as it is ten times cheaper and more stable. Thus, we created a variant of the cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto); this used NADH 4200‐fold better than NADPH. By combining structure analysis, sequence alignment, and literature data, 21 residues in proximity of the cofactor were identified and targeted for mutagenesis. Two combinatorial variants bearing three or four mutations showed higher conversions of cyclohexanone with NADH (79 %) compared to NADPH (58 %) as well as specificity. The structural reasons for this switch in cofactor specificity of a type I BVMO are especially a hydrogen‐bond network coordinating the two hydroxy groups of NADH through direct interactions and bridging water molecules.
Applied Microbiology and Biotechnology | 2017
Anders M. Knight; Alberto Nobili; Tom van den Bergh; Maika Genz; Henk-Jan Joosten; Dirk Albrecht; Katharina Riedel; Ioannis V. Pavlidis; Uwe T. Bornscheuer
Pyridoxal-5′-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found. Compared to these two classes of enzymes, the protein sequences being the object of this study completely lack the C-terminal domain, which has been reported important for the formation of the dimer interface in other fold-type III enzymes. The 5666 sequences cluster around four protein templates, which also share little sequence identity to each other. In this work, these four template proteins were solubly expressed in Escherichia coli, purified, and their substrate profiles were evaluated by HPLC analysis for racemase activity using a broader range of amino acids. They were found active only against alanine or serine, where they exhibited Michaelis constants within the range of typical bacterial alanine racemases, but with significantly lower turnover numbers. As the already described racemases were proposed to be active and appeared to be monomers as judged from their crystal structures, we also investigated this aspect for the four new enzymes. Here, size exclusion chromatography indicated the presence of oligomeric states of the enzymes and a native-PAGE in-gel assay showed that the racemase activity was present only in an oligomeric state but not as monomer. This suggests the likelihood of a different behavior of these enzymes in solution compared to the one observed in crystalline form.
Methods of Molecular Biology | 2014
Maika Genz; Norbert Sträter
The unique ribonuclease S (RNase S) system, derived from proteolytic cleavage of bovine ribonuclease A (RNase A), consists of a tight complex formed by a peptide (amino acids 1-20) and a protein (21-124) part. These fragments, designated as S-peptide and S-protein, can be separated by two purification steps. By addition of synthetic S-peptide derivatives to the S-protein, semisynthetic RNase S is reassembled with high efficiency. Based on this peptide-protein complementation noncanonical amino acids can be easily introduced into a protein host. Here we describe the preparation of the S-protein from RNase A as well as the characterization of the reassembled semisynthetic RNase S complex. Complex formation can be monitored by RNase activity, circular dichroism, or fluorescence polarization. Structure-based enzyme design of the RNase S scaffold is possible based on high-resolution crystal structures of RNase S and its semisynthetic variants.
ACS Chemical Biology | 2016
Kathleen Balke; Sandy Schmidt; Maika Genz; Uwe T. Bornscheuer