Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maiko Kagami is active.

Publication


Featured researches published by Maiko Kagami.


Hydrobiologia | 2007

Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics

Maiko Kagami; Arnout de Bruin; Bastiaan Willem Ibelings; Ellen Van Donk

Many phytoplankton species are susceptible to fungal parasitism. Parasitic fungi of phytoplankton mainly belong to the Chytridiomycetes (chytrids). Here, we discuss the progression made in the study of chytrids that parasitize phytoplankton species. Specific fluorescent stains aid in the identification of chytrids in the field. The established culturing methods and the advances in molecular science offer good potential to gain a better insight into the mechanisms of epidemic development of chytrids and coevolution between chytrids and their algal hosts. Chytrids are often considered to be highly host-specific parasites, but the extent of host specificity has not been fully investigated. Chytrids may prefer larger host cells, since they would gain more resources, but whether hosts are really selected on the basis of size is not clear. The dynamics of chytrids epidemics in a number of studies were partly explained by environmental factors such as light, temperature, nutrients, pH, turbulence and zooplankton grazing. No generalization was made about the epidemic conditions; some state unfavorable conditions for the host growth support epidemic development, while others report epidemics even under optimal growth conditions for the host. Phytoplankton is not defenseless, and several mechanisms have been suggested, such as a hypersensitivity response, chemical defense, maintaining a high genetic diversity and multitrophic indirect defenses. Chytrids may also play an important role in food webs, because zoospores of chytrids have been found to be a good food source for zooplankton.


Journal of Phycology | 2004

Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota)

Bastiaan Willem Ibelings; Arnout de Bruin; Maiko Kagami; M. Rijkeboer; M. Brehm; Ellen Van Donk

Some chytrids are host‐specific parasiticfungithat may have a considerable impact on phytoplankton dynamics. The phylum Chytridiomycota contains one class, the Chytridiomycetes, and is composed of five different orders. Molecular studies now firmly place the Chytridiomycota within the fungal kingdom. Chytrids are characterized by having zoospores, a motile stage in their life cycle. Zoospores are attracted to the host cell by specific signals. No single physical–chemical factor has been found that fully explains the dynamics of chytrid epidemics in the field. Fungal periodicity was primarily related to host cell density. The absence of aggregated distributions of chytrids on their hosts suggested that their hosts did not vary in their susceptibility to infection. A parasite can only become epidemic when it grows faster than the host. Therefore, it has been suggested that epidemics in phytoplankton populations arise when growth conditions for the host are unfavorable. No support for such a generalization was found, however. Growth of the parasitic fungus Rhizophydium planktonicum Canter emend, parasitic on the diatom Asterionella formosa Hassal, was reduced under stringent nutrient limitation,because production and infectivity of zoospores were affected negatively. A moderate phosphorous or light limitation favored epidemic development, however. Chytrid infections have been shown to affect competition between their algal hosts and in this way altered phytoplankton succession. There is potential for coevolution between Asterionella and the chytrid Zygorhizidium planktonicum Canter based on clear reciprocal fitness costs, absence of overall infective parasite strains, and possibly a genetic basis for host susceptibility and parasite infectivity.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella

Maiko Kagami; Eric von Elert; Bastiaan Willem Ibelings; Arnout de Bruin; Ellen Van Donk

In food-web studies, parasites are often ignored owing to their insignificant biomass. We provide evidence that parasites may affect trophic transfer in aquatic food webs. Many phytoplankton species are susceptible to parasitic fungi (chytrids). Chytrid infections of diatoms in lakes may reach epidemic proportions during diatom spring blooms, so that numerous free-swimming fungal zoospores (2–3 μm in diameter) are produced. Analysis shows that these zoospores are rich in polyunsaturated fatty acids and sterols (particularly cholesterol), which indicates that they provide excellent food for zooplankters such as Daphnia. In life-table experiments using the large diatom Asterionella formosa as food, Daphnia growth increased significantly in treatments where a parasite was present. By grazing on the zoospores, Daphnia acquired important supplementary nutrients and were able to grow. When large inedible algae are infected by parasites, nutrients within the algal cells are consumed by these chytrids, some of which, in turn, are grazed by Daphnia. Thus, chytrids transfer energy and nutrients from their hosts to zooplankton. This study suggests that parasitic fungi alter trophic relationships in freshwater ecosystems and may be the important components in shaping the community and the food-web dynamics of lakes.


Frontiers in Microbiology | 2014

Mycoloop: chytrids in aquatic food webs

Maiko Kagami; Gaku Takimoto

Parasites are ecologically significant in various ecosystems through their role in shaping food web structure, facilitating energy transfer, and controlling disease. Here in this review, we mainly focus on parasitic chytrids, the dominant parasites in aquatic ecosystems, and explain their roles in aquatic food webs, particularly as prey for zooplankton. Chytrids have a free-living zoosporic stage, during which they actively search for new hosts. Zoospores are excellent food for zooplankton in terms of size, shape, and nutritional quality. In the field, densities of chytrids can be high, ranging from 101 to 109 spores L−1. When large inedible phytoplankton species are infected by chytrids, nutrients within host cells are transferred to zooplankton via the zoospores of parasitic chytrids. This new pathway, the “mycoloop,” may play an important role in shaping aquatic ecosystems, by altering sinking fluxes or determining system stability. The grazing of zoospores by zooplankton may also suppress outbreaks of parasitic chytrids. A food web model demonstrated that the contribution of the mycoloop to zooplankton production increased with nutrient availability and was also dependent on the stability of the system. Further studies with advanced molecular tools are likely to discover greater chytrid diversity and evidence of additional mycoloops in lakes and oceans.


Limnology | 2001

Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa

Maiko Kagami; Jotaro Urabe

Abstract It is well known that algal growth rates decrease with increasing cell size. Most of these findings were, however, obtained under laboratory conditions. It is not clear if these allometric relationships are also applicable to in situ conditions. In the present study, the relationship between growth rates and cell size of algal species was examined seasonally in Lake Biwa by in situ dilution bioassays. The bioassays revealed that the highest growth rate of each species throughout the experiments was negatively correlated with cell size consistent with known allometric relationships. At each incubation experiment, however, growth rates were not necessarily correlated with cell size. This was true even when both macro- and micronutrients were added, although a substantial number of species responded to nutrient enrichment. These results showed that nutrient supplies affected algal species differently regardless of cell size and that factors other than nutrient supplies limited the growth rate of some algal species. Due to such species-specific differences in limiting factors, at any given time in situ growth rates of algae are not determined exclusively by cell size.


Ecological Research | 1999

Light, nutrients and primary productivity in Lake Biwa: An evaluation of the current ecosystem situation

Jotaro Urabe; Tatsuki Sekino; Kentaro Nozaki; Akihiro Tsuji; Chikage Yoshimizu; Maiko Kagami; Tadatoshi Koitabashi; Tatsuo Miyazaki; Masami Nakanishi

Simple correlation and multiple regression analyses were performed to examine the relationship between primary productivity and environmental factors in the north basin of Lake Biwa. The primary production rates used in the analyses were estimated monthly or bimonthly during the growing season (April–November) in 1992, 1996 and 1997 with the 13C method. Elemental (C, N and P) contents of seston were used to assess nutrient conditions. Analyses revealed that 86% of variance in depth-integrated primary production rates (areal PP) can be explained by changes in light intensity, and sestonic C, N and P concentrations. Water temperature had no effect on areal PP. To assess relative effects of light and nutrients on PP, the P:B ratio was estimated by normalizing PP with sestonic C. The areal P:B ratio correlated most significantly with the sestonic N:P ratio, followed by light intensity. When regression analyses were made at each depth, however, the P:B ratio correlated significantly only with the sestonic N:P ratio at 0 and 1 m depths, while light intensity was also incorporated into the regressions at deeper than 2.5 m. In these regressions, the P:B ratio was negatively correlated with sestonic N:P ratio but positively with light intensity. The results suggest that the primary production rate in this lake was mainly limited by P relative to N supply rates, but was not free from light limitation in a large part of the epilimnion. In Lake Biwa, the vertical water mixing regime as well as the nutrient supply seem to be important in determining the growth and composition of primary producers, since the surface mixing layer extends into 10–15 m depths during most of the growing season.


Journal of Eukaryotic Microbiology | 2008

Adaptation of the fungal parasite Zygorhizidium planktonicum during 200 generations of growth on homogeneous and heterogeneous populations of its host, the diatom Asterionella formosa

Arnout de Bruin; Bastiaan Willem Ibelings; Maiko Kagami; Wolf M. Mooij; Ellen Van Donk

ABSTRACT. We followed adaptation of the chytrid parasite Zygorhizidium planktonicum during 200 generations of growth on its host, the freshwater diatom Asterionella formosa, in a serial passage experiment. Evolution of parasite fitness was assessed both on a homogenous and heterogeneous host population, consisting of respectively a single new and ten different new host strains. These 10 host strains were genetically different and also varied in their initial susceptibility to the parasite. Parasite fitness increased significantly and rapidly on the new, genetically homogenous host population, but remained unaltered during 200 generations of growth on the heterogeneous host population. Enhanced parasite fitness was the result of faster and more efficient transmission, resulting in higher values of R0 (number of secondary infections). Consequently, parasites that evolved within the uniclonal host population infected significantly more of these hosts than did their ancestors. We thus provide experimental evidence for the widely held view that host genetic diversity restricts evolution of parasites and moderates their harmful effects. Genetically uniform host populations are not only at increased risk from fungal epidemics because they all share the same susceptibility, but also because new parasite strains are able to adapt quickly to new host environments and to improve their fitness.


Oecologia | 2002

Direct and indirect effects of zooplankton on algal composition in in situ grazing experiments

Maiko Kagami; Takehito Yoshida; Tek Bahadur Gurung; Jotaro Urabe

Abstract. To examine both direct and indirect effects of macrozooplankton on phytoplankton species in Lake Biwa, we conducted in situ grazer-gradient experiments under different nutrient levels in summer, when Daphniagaleata dominated, and in autumn, when Eodiaptomusjaponicus dominated. The experiments revealed that grazing pressure on phytoplankton was highly dependent on zooplankton species composition. Smaller phytoplankton species such as Stephanodiscuscarconensis were more grazed when D. galeata was abundant, whereas large colonial diatom species such as Aulacoseiragranulata were preferentially grazed when E. japonicus dominated. In addition, indirect effect of macrozooplankton through nutrient regeneration was suggested, although the magnitude of nutrient regeneration effects seemed to differ between D. galeata and E. japonicus. Specifically, growth rates of Sphaerocystisschroeteri were stimulated more by E. japonicus than by D. galeata. Macrozooplankton also enhanced the growth rates of colonial cyanobacteria such as Microcystisincerta, probably through decreasing the density of microzooplankton grazers (ciliates and rotifers). The results suggest that the effects of large zooplankton on phytoplankton populations are species-specific and cannot be understood without consideration of changes in abundance of other components of plankton communities.


Hydrobiologia | 2011

Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms

Maiko Kagami; Nico R. Helmsing; Ellen Van Donk

Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidiumplanktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z.planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z.planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.


Microbial Ecology | 2012

Community Structure of Planktonic Fungi and the Impact of Parasitic Chytrids on Phytoplankton in Lake Inba, Japan

Maiko Kagami; Yosuke Amano; Nobuyoshi Ishii

Freshwater fungi have received little attention by scientific research in recent years, especially fungi of the pelagic zone. Recently, parasitic fungi, termed chytrids, have been found to play important roles in aquatic food webs. Yet, the diversity and community structure of planktonic fungi including chytrids are not well studied. In this study, we examined the temporal fluctuations of freshwater fungi, including chytrids, in Lake Inba by using molecular techniques of denaturing gradient gel electrophoresis (DGGE). DGGE profiles, and associated sequence analysis, indicated that chytrids were present on all sampling dates from May to October (n = 12). In addition, analysis showed that a large proportion of the sequences belonged to chytrids of both parasitic and saprotrophic species. This finding was supported by microscopic observations using Calcofluor white to stain chytrids infecting various phytoplankton species. The percentages of infection by chytrids on two dominant diatom species, Aulacoseira granulata and Aulacoseira ambigua, showed a similar seasonal pattern in the DGGE band profiles. From the phylogenetic analysis and microscopic identification, the chytrids infecting the two diatoms are likely to be affiliated to Chytriomyces sp. and Zygorhizidium sp.. This is the first study to show that DGGE is a useful preliminary approach for examining the diversity of planktonic fungi including chytrids. Our results indicate both parasitic and saprotrophic chytrids are a significant component of freshwater fungi inhabiting the pelagic zone of Lake Inba, Japan. Further modification of DGGE, together with new molecular techniques and microscopic observation, would reveal the hidden diversity and ecological significance of planktonic fungi in aquatic ecosystems.

Collaboration


Dive into the Maiko Kagami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Télesphore Sime-Ngando

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge