Maiqing Zheng
Hunan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maiqing Zheng.
BMC Genomics | 2012
Huanxian Cui; Ranran Liu; Guiping Zhao; Maiqing Zheng; Jilan Chen; Jie Wen
BackgroundIntramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line.ResultsAgilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition.ConclusionThe results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.
PLOS ONE | 2013
Ranran Liu; Yanfa Sun; Guiping Zhao; Fangjie Wang; Dan Wu; Maiqing Zheng; Jilan Chen; Lei Zhang; Yaodong Hu; Jie Wen
Body composition and meat quality traits are important economic traits of chickens. The development of high-throughput genotyping platforms and relevant statistical methods have enabled genome-wide association studies in chickens. In order to identify molecular markers and candidate genes associated with body composition and meat quality traits, genome-wide association studies were conducted using the Illumina 60 K SNP Beadchip to genotype 724 Beijing-You chickens. For each bird, a total of 16 traits were measured, including carcass weight (CW), eviscerated weight (EW), dressing percentage, breast muscle weight (BrW) and percentage (BrP), thigh muscle weight and percentage, abdominal fat weight and percentage, dry matter and intramuscular fat contents of breast and thigh muscle, ultimate pH, and shear force of the pectoralis major muscle at 100 d of age. The SNPs that were significantly associated with the phenotypic traits were identified using both simple (GLM) and compressed mixed linear (MLM) models. For nine of ten body composition traits studied, SNPs showing genome wide significance (P<2.59E−6) have been identified. A consistent region on chicken (Gallus gallus) chromosome 4 (GGA4), including seven significant SNPs and four candidate genes (LCORL, LAP3, LDB2, TAPT1), were found to be associated with CW and EW. Another 0.65 Mb region on GGA3 for BrW and BrP was identified. After measuring the mRNA content in beast muscle for five genes located in this region, the changes in GJA1 expression were found to be consistent with that of breast muscle weight across development. It is highly possible that GJA1 is a functional gene for breast muscle development in chickens. For meat quality traits, several SNPs reaching suggestive association were identified and possible candidate genes with their functions were discussed.
BMC Genomics | 2013
Yanfa Sun; Guiping Zhao; Ranran Liu; Maiqing Zheng; Yaodong Hu; Dan Wu; Lei Zhang; Peng Li; Jie Wen
BackgroundMeat quality is an important economic trait in chickens. To identify loci and genes associated with meat quality traits, we conducted a genome-wide association study (GWAS) of F2 populations derived from a local Chinese breed (Beijing-You chickens) and a commercial fast-growing broiler line (Cobb-Vantress).ResultsIn the present study, 33 association signals were detected from the compressed mixed linear model (MLM) for 10 meat quality traits: dry matter in breast muscle (DMBr), dry matter in thigh muscle (DMTh), intramuscular fat content in breast muscle (IMFBr), meat color lightness (L*) and yellowness (b*) values, skin color L*, a* (redness) and b* values, abdominal fat weight (AbFW) and AbFW as a percentage of eviscerated weight (AbFP). Relative expressions of candidate genes identified near significant signals were compared using samples of chickens with High and Low phenotypic values. A total of 14 genes associated with IMFBr, meat color L*, AbFW, and AbFP, were differentially expressed between the High and Low phenotypic groups. These genes are, therefore, prospective candidate genes for meat quality traits: protein tyrosine kinase (TYRO3) and microsomal glutathione S-transferase 1 (MGST1) for IMFBr; collagen, type I, alpha 2 (COL1A2) for meat color L*; and RET proto-oncogene (RET), natriuretic peptide B (NPPB) and sterol regulatory element binding transcription factor 1 (SREBF1) for the abdominal fat (AbF) traits.ConclusionsBased on the association signals and differential expression of nearby genes, 14 candidate loci and genes for IMFBr, meat L* and b* values, and AbF are identified. The results provide new insight into the molecular mechanisms underlying meat quality traits in chickens.
PLOS ONE | 2012
Zhongyong Gou; Ranran Liu; Guiping Zhao; Maiqing Zheng; Peng Li; Huihua Wang; Yun Zhu; Jilan Chen; Jie Wen
Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1.
Poultry Science | 2009
Jingpeng Zhao; Jilan Chen; Guanghua Zhao; Maiqing Zheng; R. R. Jiang; Jie Wen
A study was conducted to evaluate the effects of varying nutrient density with constant ME:CP ratio on growing performance, carcass characteristics, and blood responses in 2 distinct broiler breeds of male chickens (Arbor Acres, a commercial line, and Beijing-You, a Chinese nonimproved line). Experimental diets were formulated with high, medium, or low nutrient densities for 3 growing phases. Starter diets (1 to 21 d) contained 23, 21, and 19% CP with 3,059, 2,793, and 2,527 kcal/kg of ME; grower diets (22 to 35 d) contained 21, 19, and 17% CP with 3,150, 2,850, and 2,550 kcal/kg of ME; and finisher diets (36 to 42 d for Arbor Acres and 36 to 91 d for Beijing-You) had 19, 17, and 15% CP with 3,230, 2,890, and 2,550 kcal/kg of ME. Male hatchlings (216 of each breed) were randomly assigned to 6 replicates of 12 birds in each treatment. Arbor Acres broilers had better (P < 0.001) BW gain, feed conversion ratio (FCR), and carcass yield, but had greater (P < 0.001) abdominal and carcass fat deposition. In both breeds, the higher nutrient density increased (P < 0.05) BW gain, protein efficiency ratio, and energy efficiency ratio while decreasing (P < 0.05) feed intake and FCR. The breed differences were increased for FCR, protein efficiency ratio, and energy efficiency ratio in the starter period and decreased for carcass chemical composition, respectively, by higher nutrient density. These findings indicate that 1) genetic improvement has a significant effect on broiler responses to dietary nutrient density, 2) performance differences between breeds are lessened with diets of low nutrient density, 3) carcass quality differences are less when birds were fed diets of high nutrient density, 4) carcass composition is hardly modified by nutrient density and both breeds exhibit similar metabolite responses to dietary concentrations, and 5) optimal diets are deduced for these breeds for the 3 growing phases.
Animal Biotechnology | 2009
Manhong Ye; Jilan Chen; Guiping Zhao; Maiqing Zheng; Jie Wen
This study has assessed the association of single nucleotide polymorphisms (SNP) identified in the adipocyte fatty acid binding protein (A-FABP) and heart-type fatty acid binding protein (H-FABP) genes with the content of intramuscular fat (IMF) in a population of male Beijing-You chickens. A previously described SNP in the chicken A-FABP gene had a significant (P < 0.05) effect on IMF content. Chickens inheriting the homozygous BB genotype at A-FABP had a significantly higher content of IMF in thigh muscles and breast muscles than did those inheriting the AA and AB genotypes. A novel SNP, identified here, in the H-FABP gene was also significantly (P < 0.05) associated with IMF content in thigh and breast muscle. Chickens inheriting the genotypes of DD and CD had much higher content of IMF than those inheriting the homozygous genotype of CC. Markers at the A-FABP and H-FABP genes were associated with IMF content in the studied population. Chickens inheriting the BB genotype at A-FABP, along with the CD genotype at H-FABP, produced muscles with a much higher content of IMF when compared with all other genotypes. A weak interaction between A-FABP and H-FABP was detected (P < 0.09) for IMF content in the tested population. The statistical significance of interaction is tentative because of the limited number of observations for some genotypic combinations. Markers identified within the A-FABP and H-FABP genes are suitable for future use in identifying chickens with the genetic potential to produce more desirable muscle with higher IMF content, at least in the population of Beijing-You male chickens.
Journal of Lipid Research | 2012
Huanxian Cui; Guiping Zhao; Ranran Liu; Maiqing Zheng; Jilan Chen; Jie Wen
Transcripts and protein for follicle-stimulating hormone receptor (FSHR) were demonstrated in abdominal adipose tissue of female chickens. There was no expression of the Fsh gene, but FSH and FSHR colocalized, suggesting that FSH was receptor bound. Partial correlations indicted that changes in abdominal fat (AF) content were most directly correlated with Fshr mRNA expression, and the latter was directly correlated with tissue FSH content. These relationships were consistent with FSH inducing Fshr mRNA expression and with the finding that FSH influenced the accumulation of AF in chickens, a novel role for the hormone. Chicken preadipocytes responded linearly to doubling concentrations of FSH in Fshr mRNA expression and quantities of FSHR and lipid, without discernable effect on proliferation. Cells exposed to FSH more rapidly acquired adipocyte morphology. Treatment of young chickens with chicken FSH (4 mIU/day, subcutaneous, days 7–13) did not significantly decrease live weight but increased AF weight by 54.61%, AF as a percentage of live weight by 55.45%, and FSHR transcripts in AF by 222.15% (2 h after injection). In cells stimulated by FSH, genes related to lipid metabolism, including Rdh10, Dci, RarB, Lpl, Acsl3, and Dgat2, were expressed differentially, compared with no FSH. Several pathways of retinal and fatty acid metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling changed. In conclusion, FSH stimulates lipid biosynthesis by upregulating Fshr mRNA expression in abdominal adipose tissue of chickens. Several genes involved in fatty acid and retinal metabolism and the PPAR signaling pathway mediate this novel function of FSH.
Animal Biotechnology | 2008
W. J. Li; H. B. Li; Jilan Chen; Guiping Zhao; Maiqing Zheng; Jie Wen
This study examined the association between expression of heart- and adipocyte-fatty acid binding-protein genes (H- and A-FABP) with intramuscular fat percentage (IFP) in two Chinese chicken breeds (Beijingyou [BJY] and Jingxing [JX]). The results showed that age and breed had significant effects on the FABP expression. A-FABP mRNA levels were dramatically higher in BJY than in JX chickens and in males than in females. The results indicate that transcription of H- and A-FABP genes was significantly correlated with IFP in two breeds of chicken.
Poultry Science | 2011
Guanghua Zhao; Huanxian Cui; Ranran Liu; Maiqing Zheng; Jilan Chen; Jie Wen
On the basis of meat quality traits, muscle fiber characteristics, and nutrient components and contents in chickens at market age, 120-d-old Beijing-you (BJY) chickens (the Chinese local breed) had distinct breast muscle features when compared with 42-d-old Arbor Acres (AA) chickens (the genetically improved broiler line). The phospholipid (P < 0.05) and essential fatty acid (P < 0.05) contents in BJY chickens were significantly higher than those in AA chickens. No differences (P > 0.05) were found between the breeds in the contents of polyunsaturated fatty acids, unsaturated fatty acids, protein, or amino acids. Breast muscle fiber diameter was significantly smaller (~55.76%) and fiber density was higher (~174.86%) in BJY chickens than in AA chickens (P < 0.05). In this study, breast muscle from 120-d-old BJY chickens was judged to have better quality of phospholipids and essential fatty acid contents and muscle fiber characteristics than breast muscle from 42-d-old AA chickens.
Scientific Reports | 2015
He Huang; Ranran Liu; Guoping Zhao; Q.H. Li; Maiqing Zheng; Jun Zhang; Shaowei Li; Zicai Liang; Jun Wen
Excessive fat accretion is a crucial problem during broiler production. Abdominal fat weight (AbFW) and abdominal fat percentage (AbFP) are major phenotypic indices of fat traits. The present study used F2 females derived from a cross between Beijing-You and Cobb-Vantress chickens. Cohorts with extreme AbFP and AbFW phenotypes were chosen to construct high- and low-abdominal fat libraries (HAbF and LAbF, respectively) to investigate the expression profiles by RNA-sequencing and microRNA (miRNA)-sequencing. Compared with the LAbF library, 62 differentially expressed miRNAs (DEMs) and 303 differentially expressed genes (DEGs) were identified in the HAbF birds. Integrated analysis of DEMs and DEGs showed that a total of 106 DEGs were identified as target genes for the 62 DEMs. These genes were designated as intersection genes, and 11 of these genes are involved in lipid metabolism pathways. The miRNA gga-miR-19b-3p accelerated the proliferation of preadipocytes, as well as adipocyte differentiation, by down- regulating ACSL1. These findings suggest that some strong candidate miRNAs and genes, important in relation to abdominal adipose deposition, were identified by the integrated analysis of DEMs and DEGs. These findings add to our current understanding of the molecular genetic controls underlying abdominal adipose accumulation in chickens.