Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maisa Seppala is active.

Publication


Featured researches published by Maisa Seppala.


Journal of Clinical Investigation | 2007

Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog

Maisa Seppala; Michael J. Depew; David C. Martinelli; Chen-Ming Fan; Paul T. Sharpe; Martyn T. Cobourne

Holoprosencephaly (HPE) is a clinically heterogeneous developmental anomaly affecting the CNS and face, in which the embryonic forebrain fails to divide into distinct halves. Numerous genetic loci and environmental factors are implicated in HPE, but mutation in the sonic hedgehog (Shh) gene is an established cause in both humans and mice. As growth arrest-specific 1 (Gas1) encodes a membrane glycoprotein previously identified as a Shh antagonist in the somite, we analyzed the craniofacial phenotype of mice harboring a targeted Gas1 deletion. Gas1(-/-) mice exhibited microform HPE, including midfacial hypoplasia, premaxillary incisor fusion, and cleft palate, in addition to severe ear defects; however, gross integrity of the forebrain remained intact. These defects were associated with partial loss of Shh signaling in cells at a distance from the source of transcription, suggesting that Gas1 can potentiate hedgehog signaling in the early face. Loss of a single Shh allele in a Gas1(-/-) background significantly exacerbated the midline craniofacial phenotype, providing genetic evidence that Shh and Gas1 interact. As human GAS1 maps to chromosome 9q21.3-q22, a region previously associated with nonsyndromic cleft palate and congenital deafness, our results establish GAS1 as a potential locus for several human craniofacial malformations.


Developmental Biology | 2016

Hedgehog receptor function during craniofacial development.

Guilherme M. Xavier; Maisa Seppala; William B. Barrell; Anahid A. Birjandi; Finn Geoghegan; Martyn T. Cobourne

The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.


BMC Biology | 2013

The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling

Roman H. Khonsari; Maisa Seppala; Alan Pradel; Hugo Dutel; Gaël Clément; O. V. Lebedev; Sarah Ghafoor; Michaela Rothová; Abigael Tucker; John G. Maisey; Chen-Ming Fan; Maiko Kawasaki; Atsushi Ohazama; Paul Tafforeau; Brunella Franco; Jill A. Helms; Courtney J. Haycraft; Albert David; Philippe Janvier; Martyn T. Cobourne; Paul T. Sharpe

BackgroundThe pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance.ResultsWe show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling.ConclusionThese results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny.


Biology Open | 2014

Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function

Maisa Seppala; Guilherme M. Xavier; Chen-Ming Fan; Martyn T. Cobourne

ABSTRACT Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1−/− mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc−/− mice have a normal facial midline. However, Gas1−/−; Boc−/− mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations.


Frontiers in Physiology | 2014

Expression analysis of candidate genes regulating successional tooth formation in the human embryo

Ryan Olley; Guilherme M. Xavier; Maisa Seppala; Ana Angelova Volponi; Fin Geoghegan; Paul T. Sharpe; Martyn T. Cobourne

Human dental development is characterized by formation of primary teeth, which are subsequently replaced by the secondary dentition. The secondary dentition consists of incisors, canines, and premolars, which are derived from the successional dental lamina of the corresponding primary tooth germs; and molar teeth, which develop as a continuation of the dental lamina. Currently, very little is known about the molecular regulation of human successional tooth formation. Here, we have investigated expression of three candidate regulators for human successional tooth formation; the Fibroblast Growth Factor-antagonist SPROUTY2, the Hedgehog co-receptor GAS1 and the RUNT-related transcription factor RUNX2. At around 8 weeks of development, only SPROUTY2 showed strong expression in both epithelium and mesenchyme of the early bud. During the cap stage between 12–14 weeks, SPROUTY2 predominated in the dental papilla and inner enamel epithelium of the developing tooth. No specific expression was seen in the successional dental lamina. GAS1 was expressed in dental papilla and follicle, and associated with mesenchyme adjacent to the primary dental lamina during the late cap stage. In addition, GAS1 was identifiable in mesenchyme adjacent to the successional lamina, particularly in the developing primary first molar. For RUNX2, expression predominated in the dental papilla and follicle. Localized expression was seen in mesenchyme adjacent to the primary dental lamina at the late cap stage; but surprisingly, not in the early successional lamina at these stages. These findings confirm that SPROUTY2, GAS1, and RUNX2 are all expressed during early human tooth development. The domains of GAS1 and RUNX2 are consistent with a role influencing function of the primary dental lamina but only GAS1 transcripts were identifiable in the successional lamina at these early stages of development.


Journal of Developmental Biology | 2017

Sonic Hedgehog Signaling and Development of the Dentition

Maisa Seppala; Gareth J. Fraser; Anahid A. Birjandi; Guilherme M. Xavier; Martyn T. Cobourne

Sonic hedgehog (Shh) is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.


Journal of Dental Research | 2017

Vax1 Plays an Indirect Role in the Etiology of Murine Cleft Palate

Finn Geoghegan; Guilherme M. Xavier; Ana Ahmadi Birjandi; Maisa Seppala; Martyn T. Cobourne

Cleft lip with or without palate (CLP) and isolated cleft palate (CP) are common human developmental malformations with a complex etiology that reflects a failure of normal facial development. VAX1 encodes a homeobox-containing transcription factor identified as a candidate gene for CLP in human populations, with targeted deletion in mice associated with multiple anomalies, including disruption of the visual apparatus and basal forebrain, lobar holoprosencephaly, and CP. We have investigated Vax1 function during murine palatogenesis but found no evidence for a direct role in this process. Vax1 is not expressed in the developing palate and mutant palatal shelves elevate above the tongue, demonstrating morphology and proliferation indices indistinguishable from wild type. However, mutant mice did have a large midline cavity originating from the embryonic forebrain situated beneath the floor of the hypothalamus and extending through the nasal cavity to expand this region and prevent approximation of the palatal shelves. Interestingly, despite strong expression of Vax1 in ectoderm of the medial nasal processes, the upper lip remained intact in mutant mice. We found further evidence of disrupted craniofacial morphology in Vax1 mutants, including truncation of the midface associated with reduced cell proliferation in forebrain neuroectoderm and frontonasal mesenchyme. Sonic hedgehog (Shh) signal transduction was downregulated in the mutant forebrain, consistent with a role for Vax1 in mediating transduction of this pathway. However, Shh was also reduced in this region, suggestive of a Shh-Vax1 feedback loop during early development of the forebrain and a likely mechanism for the underlying lobar holoprosencephaly. Despite significant associations between VAX1 and human forms of CLP, we find no evidence of a direct role for this transcription factor in development of this region in a mutant mouse model.


Orthodontics & Craniofacial Research | 2018

WNT10A mutation results in severe tooth agenesis in a family of three sisters

M. F. Abid; Michael A. Simpson; Ines A. Barbosa; Maisa Seppala; Melita Irving; Paul T. Sharpe; Martyn T. Cobourne

OBJECTIVES To identify the genetic basis of severe tooth agenesis in a family of three affected sisters. PATIENTS AND METHODS A family of three sisters with severe tooth agenesis was recruited for whole-exome sequencing to identify potential genetic variation responsible for this penetrant phenotype. The unaffected father was tested for specific mutations using Sanger sequencing. Gene discovery was supplemented with in situ hybridization to localize gene expression during human tooth development. RESULTS We report a nonsense heterozygous mutation in exon 2 of WNT10A c.321C>A[p.Cys107*] likely to be responsible for the severe tooth agenesis identified in this family through the creation of a premature stop codon, resulting in truncation of the amino acid sequence and therefore loss of protein function. In situ hybridization showed expression of WNT10A in odontogenic epithelium during the early and late stages of human primary tooth development. CONCLUSIONS WNT10A has previously been associated with both syndromic and non-syndromic forms of tooth agenesis, and this report further expands our knowledge of genetic variation underlying non-syndromic forms of this condition. We also demonstrate expression of WNT10A in the epithelial compartment of human tooth germs during development.


Archive | 2017

Development of the Dentition

Maisa Seppala; Martyn T. Cobourne

Respiration, swallowing, speech and mastication are the primary roles of the oral cavity. The human dentition has evolved to effectively carry out the latter function by having teeth with different sizes and shapes and by going through a transition from primary to secondary dentitions that ensure optimal space and occlusal relationships in the adult. Teeth start forming early during the sixth week of embryonic development and are governed by molecular signals that ensure the right teeth develop at the right time in the right place. The first primary (deciduous) teeth emerge during infancy around 6 months of age, and following many dynamic stages of dental development and facial growth, the final secondary (permanent) third molar teeth erupt around the age of 19 years to complete the permanent dentition. However, even after this event, occlusal changes continue to take place through late-stage facial growth, alveolar development, post-emergent eruption and occlusal forces.


Oncotarget | 2016

Genetic interactions between the Hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis

Guilherme M. Xavier; Maisa Seppala; Spyridon N. Papageorgiou; Chen-Ming Fan; Martyn T. Cobourne

Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves.

Collaboration


Dive into the Maisa Seppala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen-Ming Fan

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney J. Haycraft

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge