Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mait Metspalu is active.

Publication


Featured researches published by Mait Metspalu.


Nature | 2010

Ancient human genome sequence of an extinct Palaeo-Eskimo

Morten Rasmussen; Yingrui Li; Stinus Lindgreen; Jakob Skou Pedersen; Anders Albrechtsen; Ida Moltke; Mait Metspalu; Ene Metspalu; Toomas Kivisild; Ramneek Gupta; Marcelo Bertalan; Kasper Nielsen; M. Thomas P. Gilbert; Yong Wang; Maanasa Raghavan; Paula F. Campos; Hanne Munkholm Kamp; Andrew S. Wilson; Andrew Gledhill; Silvana R. Tridico; Michael Bunce; Eline D. Lorenzen; Jonas Binladen; Xiaosen Guo; Jing Zhao; Xiuqing Zhang; Hao Zhang; Zhuo Li; Minfeng Chen; Ludovic Orlando

We report here the genome sequence of an ancient human. Obtained from ∼4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20×, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.


Science | 2011

An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

Morten Rasmussen; Xiaosen Guo; Yong Wang; Kirk E. Lohmueller; Simon Rasmussen; Anders Albrechtsen; Line Skotte; Stinus Lindgreen; Mait Metspalu; Thibaut Jombart; Toomas Kivisild; Weiwei Zhai; Anders Eriksson; Andrea Manica; Ludovic Orlando; Francisco M. De La Vega; Silvana R. Tridico; Ene Metspalu; Kasper Nielsen; María C. Ávila-Arcos; J. Víctor Moreno-Mayar; Craig Muller; Joe Dortch; M. Thomas P. Gilbert; Ole Lund; Agata Wesolowska; Monika Karmin; Lucy A. Weinert; Bo Wang; Jun Li

Whole-genome data indicate that early modern humans expanded into Australia 62,000 to 75,000 years ago. We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.


PLOS ONE | 2007

Beringian Standstill and Spread of Native American Founders

Erika Tamm; Toomas Kivisild; Maere Reidla; Mait Metspalu; David Glenn Smith; Connie J. Mulligan; Claudio M. Bravi; Olga Rickards; Cristina Martínez-Labarga; E. K. Khusnutdinova; Sardana A. Fedorova; Maria V. Golubenko; V. A. Stepanov; Marina Gubina; Sergey I. Zhadanov; Ludmila P. Ossipova; Larisa Damba; M. I. Voevoda; José Edgardo Dipierri; Richard Villems; Ripan S. Malhi

Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the intial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic.


Nature | 2015

Population genomics of Bronze Age Eurasia

Morten E. Allentoft; Martin Sikora; Karl-Göran Sjögren; Simon Rasmussen; Morten Rasmussen; Jesper Stenderup; Peter de Barros Damgaard; Hannes Schroeder; Torbjörn Ahlström; Lasse Vinner; Anna-Sapfo Malaspinas; Ashot Margaryan; Thomas Higham; David Chivall; Niels Lynnerup; Lise Harvig; Justyna Baron; Philippe Della Casa; Paweł Dąbrowski; Paul R. Duffy; Alexander V. Ebel; Andrey Epimakhov; Karin Margarita Frei; Mirosław Furmanek; Tomasz Gralak; Andrey Gromov; Stanisław Gronkiewicz; Gisela Grupe; Tamás Hajdu; Radosław Jarysz

The Bronze Age of Eurasia (around 3000–1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.


American Journal of Human Genetics | 2003

The Genetic Heritage of the Earliest Settlers Persists Both in Indian Tribal and Caste Populations

Toomas Kivisild; Siiri Rootsi; Mait Metspalu; Sarabjit S. Mastana; Katrin Kaldma; Jüri Parik; Ene Metspalu; M. Adojaan; Helle-Viivi Tolk; V. A. Stepanov; Mukaddes Gölge; E. Usanga; S.S. Papiha; Cengiz Cinnioglu; Roy King; L. L. Cavalli-Sforza; Peter A. Underhill; Richard Villems

Two tribal groups from southern India--the Chenchus and Koyas--were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at Indian-specific branches of haplogroups M and N that cover populations of different social rank from all over the subcontinent. Coalescence times suggest early late Pleistocene settlement of southern Asia and suggest that there has not been total replacement of these settlers by later migrations. H, L, and R2 are the major Indian Y-chromosomal haplogroups that occur both in castes and in tribal populations and are rarely found outside the subcontinent. Haplogroup R1a, previously associated with the putative Indo-Aryan invasion, was found at its highest frequency in Punjab but also at a relatively high frequency (26%) in the Chenchu tribe. This finding, together with the higher R1a-associated short tandem repeat diversity in India and Iran compared with Europe and central Asia, suggests that southern and western Asia might be the source of this haplogroup. Haplotype frequencies of the MX1 locus of chromosome 21 distinguish Koyas and Chenchus, along with Indian caste groups, from European and eastern Asian populations. Taken together, these results show that Indian tribal and caste populations derive largely from the same genetic heritage of Pleistocene southern and western Asians and have received limited gene flow from external regions since the Holocene. The phylogeography of the primal mtDNA and Y-chromosome founders suggests that these southern Asian Pleistocene coastal settlers from Africa would have provided the inocula for the subsequent differentiation of the distinctive eastern and western Eurasian gene pools.


Nature | 2014

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Maanasa Raghavan; Pontus Skoglund; Kelly E. Graf; Mait Metspalu; Anders Albrechtsen; Ida Moltke; Simon Rasmussen; Thomas W. Stafford; Ludovic Orlando; Ene Metspalu; Monika Karmin; Kristiina Tambets; Siiri Rootsi; Reedik Mägi; Paula F. Campos; Elena Balanovska; Oleg Balanovsky; Elza Khusnutdinova; Sergey Litvinov; Ludmila P. Osipova; Sardana A. Fedorova; M. I. Voevoda; Michael DeGiorgio; Thomas Sicheritz-Pontén; Søren Brunak; Svetlana Demeshchenko; Toomas Kivisild; Richard Villems; Rasmus Nielsen; Mattias Jakobsson

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


BMC Genetics | 2004

Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

Mait Metspalu; Toomas Kivisild; Ene Metspalu; Jüri Parik; Georgi Hudjashov; Katrin Kaldma; Piia Serk; Monika Karmin; Doron M. Behar; M. Thomas P. Gilbert; Phillip Endicott; Sarabjit S. Mastana; S.S. Papiha; Karl Skorecki; Antonio Torroni; Richard Villems

BackgroundRecent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.ResultsFour new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.ConclusionsSince the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.


Nature | 2010

The genome-wide structure of the Jewish people

Doron M. Behar; Bayazit Yunusbayev; Mait Metspalu; Ene Metspalu; Saharon Rosset; Jüri Parik; Siiri Rootsi; Gyaneshwer Chaubey; Ildus Kutuev; Guennady Yudkovsky; Elza Khusnutdinova; Oleg Balanovsky; Ornella Semino; Luísa Pereira; David Comas; David Gurwitz; Batsheva Bonne-Tamir; Tudor Parfitt; Michael F. Hammer; Karl Skorecki; Richard Villems

Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical and cultural traditions. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa and Asia, in what is termed the Jewish Diaspora. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people. Although many genetic studies have shed light on Jewish origins and on diseases prevalent among Jewish communities, including studies focusing on uniparentally and biparentally inherited markers, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbours have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not previously been reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and north Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight subcluster that overlies Druze and Cypriot samples but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Indian Jews (Bene Israel and Cochini) cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively, despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.


Nature | 2014

The genome of a Late Pleistocene human from a Clovis burial site in western Montana

Morten Rasmussen; Sarah L. Anzick; Michael R. Waters; Pontus Skoglund; Michael DeGiorgio; Thomas W. Stafford; Simon Rasmussen; Ida Moltke; Anders Albrechtsen; Shane M Doyle; G. David Poznik; Valborg Gudmundsdottir; Rachita Yadav; Anna-Sapfo Malaspinas; Samuel Stockton White; Morten E. Allentoft; Omar E. Cornejo; Kristiina Tambets; Anders Eriksson; Peter D. Heintzman; Monika Karmin; Thorfinn Sand Korneliussen; David J. Meltzer; Tracey Pierre; Jesper Stenderup; Lauri Saag; Vera Warmuth; Margarida Cabrita Lopes; Ripan S. Malhi; Søren Brunak

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 14C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 14C years bp (approximately 12,707–12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Nature | 2016

The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

Swapan Mallick; Heng Li; Mark Lipson; Iain Mathieson; Melissa Gymrek; Fernando Racimo; Mengyao Zhao; Niru Chennagiri; Arti Tandon; Pontus Skoglund; Iosif Lazaridis; Sriram Sankararaman; Qiaomei Fu; Nadin Rohland; Gabriel Renaud; Yaniv Erlich; Thomas Willems; Carla Gallo; Jeffrey P. Spence; Yun S. Song; Giovanni Poletti; Francois Balloux; George van Driem; Peter de Knijff; Irene Gallego Romero; Aashish R. Jha; Doron M. Behar; Claudio M. Bravi; Cristian Capelli; Tor Hervig

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

Collaboration


Dive into the Mait Metspalu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Villems

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kumarasamy Thangaraj

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lalji Singh

Banaras Hindu University

View shared research outputs
Researchain Logo
Decentralizing Knowledge