Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maite Solas is active.

Publication


Featured researches published by Maite Solas.


Neuropsychopharmacology | 2010

Interactions Between Age, Stress and Insulin on Cognition: Implications for Alzheimer's Disease

Maite Solas; Bárbara Aisa; María C. Mugueta; Joaquín Del Río; Rosa M. Tordera; Maria J. Ramirez

There is much interest in understanding the mechanisms responsible for interactions among stress, aging, memory and Alzheimers disease. Glucocorticoid secretion associated with early life stress may contribute to the variability of the aging process and to the development of neuro- and psychopathologies. Maternal separation (MS), a model of early life stress in which rats experience 3 h of daily separation from the dam during the first 3 weeks of life, was used to study the interactions between stress and aging. Young (3 months) MS rats showed an altered hypothalamic–pituitary–adrenal (HPA) axis reactivity, depressive-like behavior in the Porsolt swimming test and cognitive impairments in the Morris water maze and new object recognition test that persisted in aged (18 months) rats. Levels of insulin receptor, phosphorylated insulin receptor and markers of downstream signaling pathways (pAkt, pGSK3β, pTau, and pERK1 levels) were significantly decreased in aged rats. There was a significant decrease in pERK2 and in the plasticity marker ARC in MS aged rats compared with single MS or aged rats. It is interesting to note that there was a significant increase in the C99 : C83 ratio, Aβ levels, and BACE1 levels the hippocampus of MS aged rats, suggesting that in aged rats subjected to early life stress, there was an increase in the amyloidogenic processing of amyloid precursor protein (APP). These results are integrated in a tentative mechanism through which aging interplay with stress to influence cognition as the basis of Alzheimer disease (AD). The present results may provide the proof-of-concept for the use of glucocorticoid-/insulin-related drugs in the treatment of AD.


Neuropharmacology | 2012

Long lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus.

Eva Martisova; Maite Solas; Igor Horrillo; Jorge E. Ortega; J. Javier Meana; Rosa M. Tordera; Maria J. Ramirez

The objective of the present work was to study the effects of an early-life stress (maternal separation, MS) in the excitatory/inhibitory ratio as a potential factor contributing to the ageing process, and the purported normalizing effects of chronic treatment with the antidepressant venlafaxine. MS induced depressive-like behaviour in the Porsolt forced swimming test that was reversed by venlafaxine, and that persisted until senescence. Aged MS rats showed a downregulation of vesicular glutamate transporter 1 and 2 (VGlut1 and VGlut2) and GABA transporter (VGAT) and increased expression of excitatory amino acid transporter 2 (EAAT2) in the hippocampus. Aged rats showed decreased expression of glutamic acid decarboxylase 65 (GAD65), while the excitatory amino acid transporter 1 (EAAT1) was affected only by stress. Glutamate receptor subunits NR1 and NR2A and GluR4 were upregulated in stressed rats, and this effect was reversed by venlafaxine. NR2B, GluR1 and GluR2/3 were not affected by either stress or age. MS, both in young and aged rats, induced an increase in the circulating levels of corticosterone. Corticosterone induced an increase glutamate and a decrease in GABA release in hippocampal slices, which was reversed by venlafaxine. Chronic treatment with corticosterone recapitulated the main biochemical findings observed in MS. The different effects that chronic stress exerts in young and adult animals on expression of proteins responsible for glutamate/GABA cycling may explain the involvement of glucocorticoids in ageing-related diseases. Modulation of glutamate/GABA release may be a relevant component of the therapeutic action of antidepressants, such as venlafaxine.


Neurobiology of Aging | 2013

CB2 receptor and amyloid pathology in frontal cortex of Alzheimer's disease patients

Maite Solas; Paul T. Francis; Rafael Franco; Maria J. Ramirez

The cannabinoid system seems to play an important role in various neurodegenerative diseases including Alzheimers disease (AD). The relationship of cannabinoid receptors (CB(1)R and CB(2)R) to cognitive function and neuropathological markers in AD remains unclear. In the present study, postmortem cortical brain tissues (Brodmann area 10) from a cohort of neuropathologically confirmed AD patients and age-matched controls were used to measure CB(1)R and CB(2)R by immunoblotting. Correlational analyses were performed for the neurochemical and cognitive data. CB(1)R expression was significantly decreased in AD. Levels of CB(1)R correlated with hypophagia, but not with any AD molecular marker or cognitive status (Mini Mental State Examination score). The level of CB(2)R was significantly higher (40%) in AD. Increases in the expression of the glial marker glial fibrillar acidic protein were also found. CB(2)R expression did not correlate with cognitive status. Interestingly, expression levels of CB(2)R correlated with two relevant AD molecular markers, Aβ(42) levels and senile plaque score. These results may constitute the basis of CB(2)R-based therapies and/or diagnostic approaches.


Frontiers in Pharmacology | 2016

c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease.

Ramon Yarza; Silvia Vela; Maite Solas; Maria J. Ramirez

c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.


Journal of Alzheimer's Disease | 2010

Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease.

Francisco J. Gil-Bea; Maite Solas; Alina Solomon; Carmen Mugueta; Bengt Winblad; Miia Kivipelto; Maria J. Ramirez; Angel Cedazo-Minguez

Previous studies have failed to reach consensus on insulin levels in cerebrospinal fluid of Alzheimers disease (AD) patients and on its relation to pathological features. We performed a new analysis in patients at different stages of AD, and investigated the relationship of insulin levels with biochemical disease markers and with cognitive score. We included 99 patients from our Memory Clinic (Karolinska University Hospital, Sweden), including: 27 patients with mild AD, 13 that progressed from mild cognitive impairment (MCI) to AD in two years time, 26 with MCI stable after two years, and 33 with subjective cognitive impairment. Insulin was significantly decreased in the cerebrospinal fluid of both women and men with mild AD. Insulin deficits were seen in women belonging to both MCI groups, suggesting that this occurs earlier than in men. Insulin was positively associated with amyloid-β 1-42 (Aβ1-42) levels and cognitive score. Furthermore, total-tau/(Aβ1-42*insulin) ratio showed strikingly better sensitivity and specificity than the total-tau/Aβ1-42 ratio for early AD diagnosis in women.


Journal of Alzheimer's Disease | 2010

HPA Axis Dysregulation Associated to Apolipoprotein E4 Genotype in Alzheimer's Disease

Francisco J. Gil-Bea; Bárbara Aisa; Alina Solomon; Maite Solas; María C. Mugueta; Bengt Winblad; Miia Kivipelto; Angel Cedazo-Minguez; Maria J. Ramirez

The present work investigated the involvement of cortisol and its receptors, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), in Alzheimers disease (AD). Cortisol was measured in cerebrospinal fluid (CSF) samples from controls, mild cognitive impairment (MCI), progressive MCI evolving to AD, and AD. CSF cortisol levels do not seem to have a prognostic value, as increases in cortisol levels were found only in AD patients. GR expression was decreased while MR expression was increased in the frontal cortex of AD. When considering degeneration (ratio to synaptophysin and the post-synaptic marker PSD95), GR expression was similar between controls and AD, suggesting that GR loss was due to synaptic degeneration in AD. Increases in cortisol levels and MR expression were associated to an apolipoprotein E4 genotype. Cognitive status was negatively associated to CSF cortisol. In apolipoprotein E4 carriers, MR but not GR expression, negatively correlated to Mini-Mental Status Examination score and positively correlated to frontal cortex amyloid-β levels. It is concluded that there is a dysregulation of the hypothalamus-pituitary-adrenal axis in AD that seems to be consequence rather than cause of AD.


British Journal of Pharmacology | 2012

Stress-induced anhedonia is associated with an increase in Alzheimer's disease-related markers

A Briones; S Gagno; Eva Martisova; M Dobarro; Bárbara Aisa; Maite Solas; Rosa M. Tordera; Maria J. Ramirez

BACKGROUND AND PURPOSE Stress is believed to be associated with the development of neuropsychiatric disorders, including Alzheimers disease (AD). We have studied mechanisms implicated in vulnerability to stress and the relationship with changes in AD‐related markers.


Hippocampus | 2010

Cholinergic hypofunction impairs memory acquisition possibly through hippocampal Arc and BDNF downregulation

Francisco J. Gil-Bea; Maite Solas; Laura Mateos; Bengt Winblad; Maria J. Ramirez; Angel Cedazo-Minguez

Recent evidence suggests that activity‐regulated cytoskeleton associated protein (Arc) and brain‐derived neurotrophic factor (BDNF) are key players in the cellular mechanisms that trigger synaptic changes and memory consolidation. Cholinergic deafferentiation of hippocampus has been largely shown to induce memory impairments in different behavioral tasks. However, the mechanisms underlying cholinergic‐induced memory formation remain unclear. The role of hippocampal cholinergic denervation on synaptic consolidation and further acquisition of spatial memory was hereby examined by analyzing Arc and BDNF in standard environment and after behavioral training in Morris water maze (MWM). In standard environment, a cholinergic hypofunction induced by the toxin 192IgG‐saporin led to significant decreases in Arc protein and mRNA as well as in BDNF. Lesioned rats subjected to MWM showed a worse acquisition performance that was reversed after galantamine treatment. Recovery of memory acquisition was accompanied by normalization of Arc and BDNF levels in hippocampus. Stimulation of muscarinic, but not nicotinic receptors, in hippocampal primary neurons caused a rapid induction of Arc production. These data suggest that cholinergic denervation of hippocampus leads to deficits in muscarinic‐dependent induction of Arc and a subsequent impairment of spatial memory acquisition.


Alzheimers & Dementia | 2014

The paradox of neuronal insulin action and resistance in the development of aging-associated diseases.

Sophie M. Steculorum; Maite Solas; Jens C. Brüning

During past decades, ever‐increasing life expectancy, despite the development of a sedentary lifestyle and altered eating habits, has led to a dramatic parallel increase in the prevalence of age‐related diseases such as type 2 diabetes mellitus (T2DM) and neurodegenerative disorders. Converging evidence from animal and human studies has indicated that insulin resistance in the central nervous system (CNS) is observed in both T2DM and neurodegenerative disorders such as Alzheimers disease (AD), leading to the hypothesis that impaired neuronal insulin action might be a unifying pathomechanism in the development of both diseases. This assumption, however, is in striking contrast to the evolutionary conserved, protective role of impaired insulin/insulin‐like growth factor 1 signaling (IIS) in aging and in protein aggregation‐associated diseases, such as AD. Thus, this review summarizes our current understanding of the physiological role of insulin action in various regions of the CNS to regulate neuronal function, learning, and memory, and to control peripheral metabolism. We also discuss mechanisms and clinical outcomes of neuronal insulin resistance and address the seeming paradox of how impaired neuronal IIS can protect from the development of neurodegenerative disorders.


Journal of Alzheimer's Disease | 2010

Altered NCAM Expression Associated with the Cholinergic System in Alzheimer's Disease

Bárbara Aisa; Francisco J. Gil-Bea; Maite Solas; Monica Garcia-Alloza; Christopher P. Chen; Mitchell K.P. Lai; Paul T. Francis; Maria J. Ramirez

Neurotransmitter system dysfunction and synapse loss have been recognized as hallmarks of Alzheimers disease (AD). Our hypothesis is that specific neurochemical populations of neurons might be more vulnerable to degeneration in AD due to particular deficits in synaptic plasticity. We have studied, in postmortem brain tissue, the relationship between levels of synaptic markers (NCAM and BDNF), neurochemical measurements (cholinacetyltransferase activity, serotonin, dopamine, GABA, and glutamate levels), and clinical data (cognitive status measured as MMSE score). NCAM levels in frontal and temporal cortex from AD patients were significantly lower than control patients. Interestingly, these reductions in NCAM levels were associated to an ApoE4 genotype. Levels of BDNF were also significantly reduced in both frontal and temporal regions in AD patients. The ratio between plasticity markers and neurochemical measurements was used to study which of the neurochemical populations was particularly associated to plasticity changes. In both the frontal and temporal cortex, there was a significant reduction in the ChAT/NCAM ratio in AD samples compared to controls. None of the ratios to BDNF were different between control and AD samples. Furthermore, Pearsons product moment showed a significant positive correlation between MMSE score and the ChAT/NCAM ratio in frontal cortex (n=19; r=0.526*; p=0.037) as well as in temporal cortex (n=19; r=0.601*; p=0.018) in AD patients. Altogether, these data suggest a potential involvement of NCAM expressing neurons in the cognitive deficits in AD.

Collaboration


Dive into the Maite Solas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge