Maïté Vicré-Gibouin
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maïté Vicré-Gibouin.
Physiologia Plantarum | 2008
John P. Moore; Maïté Vicré-Gibouin; Jill M. Farrant; Azeddine Driouich
Water-deficit stress poses unique challenges to plant cells dependent on a hydrostatic skeleton and a polysaccharide-rich cell wall for growth and development. How the plant cell wall is adapted to loss of water is of interest in developing a general understanding of water stress tolerance in plants and of relevance in strategies related to crop improvement. Drought tolerance involves adaptations to growth under reduced water potential and the concomitant restructuring of the cell wall that allow growth processes to occur at lower water contents. Desiccation tolerance, by contrast, is the evolution of cell walls that are capable of losing the majority of cellular water without suffering permanent and irreversible damage to cell wall structure and polymer organization. This minireview highlights common features and differences between these two water-deficit responses observed in plants, emphasizing the role of the cell wall, while suggesting future research avenues that could benefit fundamental understanding in this area.
Planta | 2013
John P. Moore; Eric Nguema-Ona; Maïté Vicré-Gibouin; Iben Sørensen; William G. T. Willats; Azeddine Driouich; Jill M. Farrant
A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as ‘pectic plasticizers’. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of ‘plasticising’ the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.
Frontiers in Plant Science | 2012
Azeddine Driouich; Marie-Laure Follet-Gueye; Sophie Bernard; Sumaira Kousar; Laurence Chevalier; Maïté Vicré-Gibouin; Olivier Lerouxel
The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.
Annals of Botany | 2012
Eric Nguema-Ona; Sílvia Coimbra; Maïté Vicré-Gibouin; Jean-Claude Mollet; Azeddine Driouich
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Frontiers in Plant Science | 2014
Eric Nguema-Ona; Maïté Vicré-Gibouin; Maxime Gotté; Barbara Plancot; Patrice Lerouge; Muriel Bardor; Azeddine Driouich
Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.
Current Opinion in Plant Biology | 2013
Azeddine Driouich; Marie Laure Follet-Gueye; Maïté Vicré-Gibouin; Martha C. Hawes
Border cells and border-like cells are released from the root tip as individual cells and small aggregates, or as a group of attached cells. These are viable components of the root system that play a key role in controlling root interaction with living microbes of the rhizosphere. As their separation from root tip proceeds, the cells synthesize and secrete a hydrated mucilage that contains polysaccharides, secondary metabolites, antimicrobial proteins and extracellular DNA (exDNA). This exDNA-based matrix seems to function in root defense in a way similar to that of recently characterized neutrophil extracellular traps (NETs) in mammalian cells. This review discusses the role of the cells and secreted compounds in the protection of root tip against microbial infections.
Plant Physiology | 2012
Marc Antoine Cannesan; Caroline Durand; Carole Burel; Christophe Gangneux; Patrice Lerouge; Tadashi Ishii; Karine Laval; Marie-Laure Follet-Gueye; Azeddine Driouich; Maïté Vicré-Gibouin
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.
Plant Physiology | 2013
Barbara Plancot; Catherine Santaella; Rim Jaber; Marie Christine Kiefer-Meyer; Marie-Laure Follet-Gueye; Jérôme Leprince; Isabelle Gattin; Céline Souc; Azeddine Driouich; Maïté Vicré-Gibouin
Root border-like cells of flax and Arabidopsis activate innate immunity responses to elicitors involving both callose deposition and cell wall extensin reorganization. Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as “border-like cells.” Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.
Archive | 2012
Azeddine Driouich; Marc-Antoine Cannesan; Flavien Dardelle; Caroline Durand; Barbara Plancot; Sophie Bernard; Marie-Laure Follet-Gueye; Maïté Vicré-Gibouin
Production and release of root border cells and border-like cells are fundamental processes for plant survival and development. Both types of cells are viable components of the root system that regulate its interactions with living microorganisms of the rhizosphere. Border cells are released as individual cells, whereas border-like cells remain attached to each other into small groups or as sheets after their release from the root tip. So far, border-like cells have been observed only in species belonging to the Brassicaceae family including Arabidopsis. Border cells have been largely studied in the legume species pea; in contrast, relatively little information is available on border-like cells so far due to their recent discovery. In this chapter, we present and discuss the release, organization, and the role of these cells in root protection.
Phytopathology | 2014
Christophe Gangneux; Marc-Antoine Cannesan; Mélanie Bressan; Lisa Castel; Anne Moussart; Maïté Vicré-Gibouin; Azeddine Driouich; Isabelle Trinsoutrot-Gattin; Karine Laval
Aphanomyces euteiches is a widespread oomycete pathogen causing root rot in a wide range of leguminous crops. Losses can reach up to 100% for pea culture and there is currently no registered pesticide for its control. Crop management remains the most efficient tool to control root rot, and avoidance of infested soil seems to be the optimal solution. A test was developed to identify fields suitable for pea crops, consisting of the determination of the inoculum potential of soil using baiting plants. A new rapid, specific, and sensitive molecular method is described allowing the quantification of less than 10 oospores per gram of soil. This challenge is achieved by a real-time polymerase chain reaction procedure targeting internal transcribed spacer 1 from the ribosomal DNA operons. A preliminary study based on typical soils from northwestern France demonstrated that the A. euteiches oospore density in soil is related to the inoculum potential. Furthermore, this method has proved sensitive enough to accurately study the influence of biotic factors that may govern the actual emergence of root rot.