Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maithe Arruda-Carvalho is active.

Publication


Featured researches published by Maithe Arruda-Carvalho.


Nature Neuroscience | 2012

Optical controlling reveals time-dependent roles for adult-born dentate granule cells

Yan Gu; Maithe Arruda-Carvalho; Jia Wang; Stephen Janoschka; Sheena A. Josselyn; Paul W. Frankland; Shaoyu Ge

Accumulating evidence suggests that global depletion of adult hippocampal neurogenesis influences its function and that the timing of the depletion affects the deficits. However, the behavioral roles of adult-born neurons during their establishment of projections to CA3 pyramidal neurons remain largely unknown. We used a combination of retroviral and optogenetic approaches to birth date and reversibly control a group of adult-born neurons in adult mice. Adult-born neurons formed functional synapses on CA3 pyramidal neurons as early as 2 weeks after birth, and this projection to the CA3 area became stable by 4 weeks in age. Newborn neurons at this age were more plastic than neurons at other stages. Notably, we found that reversibly silencing this cohort of ∼4-week-old cells after training, but not cells of other ages, substantially disrupted retrieval of hippocampal memory. Our results identify a restricted time window for adult-born neurons essential in hippocampal memory retrieval.


The Journal of Neuroscience | 2011

Posttraining Ablation of Adult-Generated Neurons Degrades Previously Acquired Memories

Maithe Arruda-Carvalho; Masanori Sakaguchi; Katherine G. Akers; Sheena A. Josselyn; Paul W. Frankland

New neurons are continuously generated in the subgranular zone of the adult hippocampus and, once sufficiently mature, are thought to integrate into hippocampal memory circuits. However, whether they play an essential role in subsequent memory expression is not known. Previous studies have shown that suppression of adult neurogenesis often (but not always) impairs subsequent hippocampus-dependent learning (i.e., produces anterograde effects). A major challenge for these studies is that these new neurons represent only a small subpopulation of all dentate granule cells, and so there is large potential for either partial or complete compensation by granule cells generated earlier on during development. A potentially more powerful approach to investigate this question would be to ablate adult-generated neurons after they have already become part of a memory trace (i.e., retrograde effects). Here we developed a diphtheria toxin-based strategy in mice that allowed us to selectively ablate a population of predominantly mature, adult-generated neurons either before or after learning, without affecting ongoing neurogenesis. Removal of these neurons before learning did not prevent the formation of new contextual fear or water maze memories. In contrast, removal of an equivalent population after learning degraded existing contextual fear and water maze memories, without affecting nonhippocampal memory. Ablation of these adult-generated neurons even 1 month after learning produced equivalent memory degradation in the water maze. These retrograde effects suggest that adult-generated neurons form a critical and enduring component of hippocampal memory traces.


Learning & Memory | 2012

Ontogeny of Contextual Fear Memory Formation, Specificity, and Persistence in Mice.

Katherine G. Akers; Maithe Arruda-Carvalho; Sheena A. Josselyn; Paul W. Frankland

Pinpointing the precise age when young animals begin to form memories of aversive events is valuable for understanding the onset of anxiety and mood disorders and for detecting early cognitive impairment in models of childhood-onset disorders. Although these disorders are most commonly modeled in mice, we know little regarding the development of learning and memory in this species because most previous studies have been restricted to rats. Therefore, in the present study, we constructed an ontogenetic timeline of contextual fear memory ranging from infancy to adulthood in mice. We found that the ability of mice to form long-term context-shock associations emerged ∼13-14 d of age, which is several days earlier than previously reported for rats. Although the ability to form contextual fear memories remained stable from infancy into adulthood, infant mice had shorter-lasting memories than adolescent and adult mice. Furthermore, we found that mice subjected to fetal alcohol exposure showed a delay in the developmental emergence of contextual fear memory, illustrating the utility of this ontogenetic approach in detecting developmental delays in cognitive function stemming from maladaptive early life experience.


The Journal of Neuroscience | 2014

Pathway-Selective Adjustment of Prefrontal-Amygdala Transmission during Fear Encoding

Maithe Arruda-Carvalho; Roger L. Clem

Conditioned fear requires neural activity in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), structures that are densely interconnected at the synaptic level. Previous work has suggested that anatomical subdivisions of mPFC make distinct contributions to fear expression and inhibition, and that the functional output of this processing is relayed to the BLA complex. However, it remains unknown whether synaptic plasticity in mPFC-BLA networks contributes to fear memory encoding. Here we use optogenetics and ex vivo electrophysiology to reveal the impact of fear conditioning on BLA excitatory and feedforward inhibitory circuits formed by projections from infralimbic (IL) and prelimbic (PL) cortices. In naive mice, these pathways recruit equivalent excitation and feedforward inhibition in BLA principal neurons. However, fear learning leads to a selective decrease in inhibition:excitation balance in PL circuits that is attributable to a postsynaptic increase in AMPA receptor function. These data suggest a pathway-specific mechanism for fear memory encoding by adjustment of mPFC-BLA transmission. Upon reengagement of PL by conditioned cues, these modifications may serve to amplify emotional responses.


Frontiers in Systems Neuroscience | 2015

Prefrontal-amygdala fear networks come into focus.

Maithe Arruda-Carvalho; Roger L. Clem

The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD). PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC)-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic (PL) and infralimbic (IL) subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.


The Journal of Neuroscience | 2014

Posttraining Ablation of Adult-Generated Olfactory Granule Cells Degrades Odor–Reward Memories

Maithe Arruda-Carvalho; Katherine G. Akers; Axel Guskjolen; Masanori Sakaguchi; Sheena A. Josselyn; Paul W. Frankland

Proliferation of neural progenitor cells in the subventricular zone leads to the continuous generation of new olfactory granule cells (OGCs) throughout life. These cells synaptically integrate into olfactory bulb circuits after ∼2 weeks and transiently exhibit heightened plasticity and responses to novel odors. Although these observations suggest that adult-generated OGCs play important roles in olfactory-related memories, global suppression of olfactory neurogenesis does not typically prevent the formation of odor–reward memories, perhaps because residual OGCs can compensate. Here, we used a transgenic strategy to selectively ablate large numbers of adult-generated OGCs either before or after learning in mice. Consistent with previous studies, pretraining ablation of adult-generated OGCs did not prevent the formation of an odor–reward memory, presumably because existing OGCs can support memory formation in their absence. However, ablation of a similar cohort of adult-generated OGCs after training impaired subsequent memory expression, indicating that if these cells are available at the time of training, they play an essential role in subsequent expression of odor–reward memories. Memory impairment was associated with the loss of adult-generated OGCs that were >10 d in age and did not depend on the developmental stage in which they were generated, suggesting that, once sufficiently mature, OGCs generated during juvenility and adulthood play similar roles in the expression of odor–reward memories. Finally, ablation of adult-generated OGCs 1 month after training did not produce amnesia, indicating that adult-generated OGCs play a time-limited role in the expression of odor–reward memories.


Translational Psychiatry | 2011

Impact of early adverse experience on complexity of adult-generated neurons.

Ana Teresa Figueiredo Stochero Leslie; Katherine G. Akers; A D Krakowski; Scellig Stone; Masanori Sakaguchi; Maithe Arruda-Carvalho; Paul W. Frankland

New neurons continue to be generated in the dentate gyrus (DG) region of the hippocampus throughout adulthood, and abnormal regulation of this process has emerged as an endophenotype common to several psychiatric disorders. Previous research shows that genetic risk factors associated with schizophrenia alter the maturation of adult-generated neurons. Here, we investigate whether early adversity, a potential environmental risk factor, similarly influences adult neurogenesis. During the first 2 weeks of postnatal life, mice were subject to repeated and unpredictable periods of separation from their mothers. When the mice reached adulthood, pharmacological and retroviral labelling techniques were used to assess the generation and maturation of new neurons. We found that adult mice that were repeatedly separated from their mothers early in life had similar rates of proliferation in the DG, but had fewer numbers of cells that survived and differentiated into neurons. Furthermore, neurons generated in adulthood had less complex dendritic arborization and fewer dendritic spines. These findings indicate that early adverse experience has a long-lasting impact on both the number and the complexity of adult-generated neurons in the hippocampus, suggesting that the abnormal regulation of adult neurogenesis associated with psychiatric disorders could arise from environmental influence alone, or from complex interactions of environmental factors with genetic predisposition.


The Journal of Neuroscience | 2017

Optogenetic Examination of Prefrontal-Amygdala Synaptic Development

Maithe Arruda-Carvalho; Wan-Chen Wu; Kirstie Cummings; Roger L. Clem

A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations.


Molecular Brain | 2011

Impaired spatial and contextual memory formation in galectin-1 deficient mice

Masanori Sakaguchi; Maithe Arruda-Carvalho; Na Hyea Kang; Yoichi Imaizumi; Françoise Poirier; Hideyuki Okano; Paul W. Frankland

Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1) is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/-) mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.


The Journal of Neuroscience | 2014

Conditional Deletion of α-CaMKII Impairs Integration of Adult-Generated Granule Cells into Dentate Gyrus Circuits and Hippocampus-Dependent Learning

Maithe Arruda-Carvalho; Leonardo Restivo; Axel Guskjolen; Jonathan R. Epp; Ype Elgersma; Sheena A. Josselyn; Paul W. Frankland

New granule cells are continuously integrated into hippocampal circuits throughout adulthood, and the fine-tuning of this process is likely important for efficient hippocampal function. During development, this integration process is critically regulated by the α-calcium/calmodulin-dependent protein kinase II (α-CaMKII), and here we ask whether this role is conserved in the adult brain. To do this, we developed a transgenic strategy to conditionally delete α-CaMKII from neural progenitor cells and their progeny in adult mice. First, we found that the selective deletion of α-CaMKII from newly generated dentate granule cells led to an increase in dendritic complexity. Second, α-CaMKII deletion led to a reduction in number of mature synapses and cell survival. Third, consistent with altered morphological and synaptic development, acquisition of one-trial contextual fear conditioning was impaired after deletion of α-CaMKII from newly generated dentate granule cells. Previous work in Xenopus identified α-CaMKII as playing a key role in the stabilization of dendritic and synaptic structure during development. The current study indicates that α-CaMKII plays a plays a similar, cell-autonomous role in the adult hippocampus and, in addition, reveals that the loss of α-CaMKII from adult-generated granule cells is associated with impaired hippocampus-dependent learning.

Collaboration


Dive into the Maithe Arruda-Carvalho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger L. Clem

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana B. Chiarini

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rafael Linden

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ype Elgersma

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge