Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maja Bucan is active.

Publication


Featured researches published by Maja Bucan.


Nature | 2009

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph T. Glessner; Kai Wang; Guiqing Cai; Olena Korvatska; Cecilia E. Kim; Shawn Wood; Haitao Zhang; Annette Estes; Camille W. Brune; Jonathan P. Bradfield; Marcin Imielinski; Edward C. Frackelton; Jennifer Reichert; Emily L. Crawford; Jeffrey Munson; Patrick Sleiman; Rosetta M. Chiavacci; Kiran Annaiah; Kelly Thomas; Cuiping Hou; Wendy Glaberson; James H. Flory; Frederick G. Otieno; Maria Garris; Latha Soorya; Lambertus Klei; Joseph Piven; Kacie J. Meyer; Evdokia Anagnostou; Takeshi Sakurai

Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.


Molecular Cell | 2001

A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle

James Mu; Joseph T. Brozinick; Otto Valladares; Maja Bucan; Morris J. Birnbaum

Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.


Nature | 2009

Common genetic variants on 5p14.1 associate with autism spectrum disorders

Kai Wang; Haitao Zhang; Deqiong Ma; Maja Bucan; Joseph T. Glessner; Brett S. Abrahams; Daria Salyakina; Marcin Imielinski; Jonathan P. Bradfield; Patrick Sleiman; Cecilia E. Kim; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Nagahide Takahashi; Takeshi Sakurai; Eric Rappaport; Clara M. Lajonchere; Jeffrey Munson; Annette Estes; Olena Korvatska; Joseph Piven; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Edward I. Herman; Hongmei Dong; Ted Hutman; Marian Sigman; Sally Ozonoff; Ami Klin

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10-8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10-8 to 2.1 × 10-10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Nature | 2008

Genotype, haplotype and copy-number variation in worldwide human populations

Mattias Jakobsson; Sonja W. Scholz; Paul Scheet; J. Raphael Gibbs; Jenna M. VanLiere; Hon Chung Fung; Zachary A. Szpiech; James H. Degnan; Kai Wang; Rita Guerreiro; Jose Bras; Jennifer C. Schymick; Dena Hernandez; Bryan J. Traynor; Javier Simón-Sánchez; Mar Matarin; Angela Britton; Joyce van de Leemput; Ian Rafferty; Maja Bucan; Howard M. Cann; John Hardy; Noah A. Rosenberg; Andrew Singleton

Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected—including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas—the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.


Nature Genetics | 2004

The Knockout Mouse Project

Christopher P. Austin; James F. Battey; Allan Bradley; Maja Bucan; Mario R. Capecchi; Francis S. Collins; William F. Dove; Geoffrey M. Duyk; Susan M. Dymecki; Janan T. Eppig; Franziska Grieder; Nathaniel Heintz; Geoff Hicks; Thomas R. Insel; Alexandra L. Joyner; Beverly H. Koller; K. C. Kent Lloyd; Terry Magnuson; Mark Moore; Andras Nagy; Jonathan D. Pollock; Allen D. Roses; Arthur T. Sands; Brian Seed; William C. Skarnes; Jay Snoddy; Philippe Soriano; D. Stewart; Francis Stewart; Bruce Stillman

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


PLOS Genetics | 2009

Genome-Wide Analyses of Exonic Copy Number Variants in a Family-Based Study Point to Novel Autism Susceptibility Genes

Maja Bucan; Brett S. Abrahams; Kai Wang; Joseph T. Glessner; Edward I. Herman; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Marcin Imielinski; Dexter Hadley; Jonathan P. Bradfield; Cecilia Kim; Nicole Gidaya; Ingrid Lindquist; Ted Hutman; Marian Sigman; Vlad Kustanovich; Clara M. Lajonchere; Andrew Singleton; Junhyong Kim; Thomas H. Wassink; William M. McMahon; Thomas Owley; John A. Sweeney; Hilary Coon; John I. Nurnberger; Mingyao Li; Rita M. Cantor; Nancy J. Minshew; James S. Sutcliffe; Edwin H. Cook

The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11–q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p = 2.3×10−5). Less is known about MDGA2, likewise observed to be case-specific (p = 1.3×10−4). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-value = 3×10−39), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts.


Genome Biology | 2005

Promoter features related to tissue specificity as measured by Shannon entropy

Jonathan Schug; Winfried-Paul Schuller; Claudia Kappen; J. Michael Salbaum; Maja Bucan; Christian J. Stoeckert

BackgroundThe regulatory mechanisms underlying tissue specificity are a crucial part of the development and maintenance of multicellular organisms. A genome-wide analysis of promoters in the context of gene-expression patterns in tissue surveys provides a means of identifying the general principles for these mechanisms.ResultsWe introduce a definition of tissue specificity based on Shannon entropy to rank human genes according to their overall tissue specificity and by their specificity to particular tissues. We apply our definition to microarray-based and expressed sequence tag (EST)-based expression data for human genes and use similar data for mouse genes to validate our results. We show that most genes show statistically significant tissue-dependent variations in expression level. We find that the most tissue-specific genes typically have a TATA box, no CpG island, and often code for extracellular proteins. As expected, CpG islands are found in most of the least tissue-specific genes, which often code for proteins located in the nucleus or mitochondrion. The class of genes with no CpG island or TATA box are the most common mid-specificity genes and commonly code for proteins located in a membrane. Sp1 was found to be a weak indicator of less-specific expression. YY1 binding sites, either as initiators or as downstream sites, were strongly associated with the least-specific genes.ConclusionsWe have begun to understand the components of promoters that distinguish tissue-specific from ubiquitous genes, to identify associations that can predict the broad class of gene expression from sequence data alone.


Nature | 2008

Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology.

Theresa Alenghat; Katherine Meyers; Shannon E. Mullican; Kirstin Leitner; Adetoun Adeniji-Adele; Jacqueline L. Avila; Maja Bucan; Rexford S. Ahima; Klaus H. Kaestner; Mitchell A. Lazar

Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1–Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1–Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.


Nature Reviews Genetics | 2002

The mouse: genetics meets behaviour

Maja Bucan; Ted Abel

Genetic studies in the mouse are important in the elucidation of molecular pathways that underlie behaviour. The advantages of the mouse for behavioural studies include an extensive array of genetic technologies and an elaborate behavioural repertoire that can be used to create models of human disease. This review discusses the relative advantages of forward and reverse genetic approaches to studying the genetic basis of behaviour in the mouse, and the complexities that behavioural studies need to address, such as phenotypic variability, genetic background effects and pleiotropy.


Mammalian Genome | 2000

Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains.

Lisa M. Tarantino; Thomas J. Gould; Jonathan P Druhan; Maja Bucan

Abstract. Random mutagenesis as a means of identifying the function of genes has been used extensively in a variety of model organisms. Until recently it has been used primarily in the identification of single-gene traits that cause visible and developmental mutations. However, this genetic approach also has the power to identify genes that control complex biological systems such as behavior. Mutagenesis screens for behavioral mutations require careful consideration of many factors, including choice of both assays and background strains for use in mutagenesis and subsequent mapping of the affected gene or genes. This paper describes behavioral assays for monitoring motor coordination on the accelerating rotarod, anxiety-related behaviors in the elevated zero maze and sensorimotor reactivity, gating, and habituation of acoustic startle. These five physiological or neurological behaviors can represent potential endophenotypes for a variety of neurological and psychiatric disorders. The significant degree of strain- and sex-specific differences in the performance of four inbred strains of mice (C57BL/6J, C3HeB/FeJ, DBA/2J, and 129/SvlmJ) in these behavioral assays illustrates the importance of performing baseline analysis prior to behavioral mutagenesis screens and genetic mapping of selected mutations.

Collaboration


Dive into the Maja Bucan's collaboration.

Top Co-Authors

Avatar

Patrick M. Nolan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rachel L. Kember

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kai Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Deborah L. Nagle

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Tarantino

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Otto Valladares

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Cecilia W. Lo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xiao Ji

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Benjamin Georgi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David Kapfhamer

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge