Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maja Kiselinova is active.

Publication


Featured researches published by Maja Kiselinova.


PLOS ONE | 2014

Comparison of Droplet Digital PCR and Seminested Real-Time PCR for Quantification of Cell-Associated HIV-1 RNA

Maja Kiselinova; Alexander O. Pasternak; Ward De Spiegelaere; Dirk Vogelaers; Ben Berkhout; Linos Vandekerckhove

Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been recently described as an alternative PCR-based technique for absolute quantification with higher accuracy compared to qPCR. Here, a comparison was made between the droplet digital PCR (ddPCR) and the seminested qPCR for quantification of unspliced (us) and multiply spliced (ms) CA HIV-1 RNA. Synthetic RNA standards and CA HIV-1 RNA from infected patients on and off ART (N = 34) were quantified with both methods. Correlations were observed between the methods both for serially diluted synthetic standards (usRNA: R2 = 0.97, msRNA: R2 = 0.92) and patient-derived samples (usRNA: R2 = 0.51, msRNA: R2 = 0.87). Seminested qPCR showed better quantitative linearity, accuracy and sensitivity in the quantification of synthetic standards than ddPCR, especially in the lower quantification ranges. Both methods demonstrated equally high detection rate of usRNA in patient samples on and off ART (91%), whereas ddPCR detected msRNA in larger proportion of samples from ART-treated patients (p = 0.13). We observed an average agreement between the methods for usRNA quantification in patient samples, albeit with a large standard deviation (bias = 0.05±0.75 log10). However, a bias of 0.94±0.36 log10 was observed for msRNA. No-template controls were consistently negative in the seminested qPCR, but yielded a positive ddPCR signal for some wells. Therefore, the false positive signals may have affected the detection power of ddPCR in this study. Digital PCR is promising for HIV nucleic acid quantification, but the false positive signals need further attention. Quantitative assays for CA HIV RNA have the potential to improve monitoring of patients on ART and to be used in clinical studies aimed at HIV eradication, but should be cross-validated by multiple laboratories prior to wider use.


PLOS Pathogens | 2016

Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth

Maja Kiselinova; Ward De Spiegelaere; Maria J. Buzon; Eva Malatinkova; Mathias Lichterfeld; Linos Vandekerckhove

The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients.


Analytical and Bioanalytical Chemistry | 2015

ddpcRquant: threshold determination for single channel droplet digital PCR experiments

Wim Trypsteen; Matthijs Vynck; Jan De Neve; Pawel Bonczkowski; Maja Kiselinova; Eva Malatinkova; Karen Vervisch; Olivier Thas; Linos Vandekerckhove; Ward De Spiegelaere

Digital PCR is rapidly gaining interest in the field of molecular biology for absolute quantification of nucleic acids. However, the first generation of platforms still needs careful validation and requires a specific methodology for data analysis to distinguish negative from positive signals by defining a threshold value. The currently described methods to assess droplet digital PCR (ddPCR) are based on an underlying assumption that the fluorescent signal of droplets is normally distributed. We show that this normality assumption does not likely hold true for most ddPCR runs, resulting in an erroneous threshold. We suggest a methodology that does not make any assumptions about the distribution of the fluorescence readouts. A threshold is estimated by modelling the extreme values in the negative droplet population using extreme value theory. Furthermore, the method takes shifts in baseline fluorescence between samples into account. An R implementation of our method is available, allowing automated threshold determination for absolute ddPCR quantification using a single fluorescent reporter.


Journal of Virology | 2015

Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence during Antiretroviral Therapy

Hong Sun; Dhohyung Kim; Xiaodong Li; Maja Kiselinova; Zhengyu Ouyang; Linos Vandekerckhove; Hong Shang; Eric S. Rosenberg; Xu G. Yu; Mathias Lichterfeld

ABSTRACT The ability to persist long term in latently infected CD4 T cells represents a characteristic feature of HIV-1 infection and the predominant barrier to efforts aiming at viral eradication and cure. Yet, increasing evidence suggests that only small subsets of CD4 T cells with specific developmental and maturational profiles are able to effectively support HIV-1 long-term persistence. Here, we analyzed how the functional polarization of CD4 T cells shapes and structures the reservoirs of HIV-1-infected cells. We found that CD4 T cells enriched for a Th1/17 polarization had elevated susceptibilities to HIV-1 infection in ex vivo assays, harbored high levels of HIV-1 DNA in persons treated with antiretroviral therapy, and made a disproportionately increased contribution to the viral reservoir relative to their contribution to the CD4 T memory cell pool. Moreover, HIV-1 DNA levels in Th1/17 cells remained stable over many years of antiretroviral therapy, resulting in a progressively increasing contribution of these cells to the viral reservoir, and phylogenetic studies suggested preferential long-term persistence of identical viral sequences during prolonged antiretroviral treatment in this cell compartment. Together, these data suggest that Th1/17 CD4 T cells represent a preferred site for HIV-1 DNA long-term persistence in patients receiving antiretroviral therapy. IMPORTANCE Current antiretroviral therapy is very effective in suppressing active HIV-1 replication but does not fully eliminate virally infected cells. The ability of HIV-1 to persist long term despite suppressive antiretroviral combination therapy represents a perplexing aspect of HIV-1 disease pathogenesis, since most HIV-1 target cells are activated, short-lived CD4 T cells. This study suggests that CD4 T helper cells with Th1/17 polarization have a preferential role as a long-term reservoir for HIV-1 infection during antiretroviral therapy, possibly because these cells may imitate some of the functional properties traditionally attributed to stem cells, such as the ability to persist for extremely long periods of time and to repopulate their own pool size through homeostatic self-renewal. These observations support the hypothesis that HIV-1 persistence is driven by small subsets of long-lasting stem cell-like CD4 T cells that may represent particularly promising targets for clinical strategies aiming at HIV-1 eradication and cure.


EBioMedicine | 2015

During Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ

Alessandra Ruggiero; Ward De Spiegelaere; Alessandro Cozzi-Lepri; Maja Kiselinova; Georgios Pollakis; Apostolos Beloukas; Linos Vandekerckhove; Matthew C. Strain; Douglas D. Richman; Andrew N. Phillips; Anna Maria Geretti; Paola Vitiello; Nicola Mackie; Jonathan Ainsworth; Anele Waters; Frank Post; Simon Edwards; Julie M. Fox

Background Characterising the correlates of HIV persistence improves understanding of disease pathogenesis and guides the design of curative strategies. This study investigated factors associated with integrated HIV-1 DNA load during consistently suppressive first-line antiretroviral therapy (ART). Method Total, integrated, and 2-long terminal repeats (LTR) circular HIV-1 DNA, residual plasma HIV-1 RNA, T-cell activation markers, and soluble CD14 (sCD14) were measured in peripheral blood of 50 patients that had received 1–14 years of efavirenz-based or nevirapine-based therapy. Results Integrated HIV-1 DNA load (per 106 peripheral blood mononuclear cells) was median 1.9 log10 copies (interquartile range 1.7–2.2) and showed a mean difference of 0.2 log10 copies per 10 years of suppressive ART (95% confidence interval − 0.2, 0.6; p = 0.28). It was positively correlated with total HIV-1 DNA load and frequency of CD8+HLA-DR/DP/DQ+ cells, and was also higher in subjects with higher sCD14 levels, but showed no correlation with levels of 2-LTR circular HIV-1 DNA and residual plasma HIV-1 RNA, or the frequency of CD4+CD38+ and CD8+CD38+ cells. Adjusting for pre-ART viral load, duration of suppressive ART, CD4 cell counts, residual plasma HIV-1 RNA levels, and sCD14 levels, integrated HIV-1 DNA load was mean 0.5 log10 copies higher for each 50% higher frequency of CD8+HLA-DR/DP/DQ+ cells (95% confidence interval 0.2, 0.9; p = 0.01). Conclusions The observed positive association between integrated HIV-1 DNA load and frequency of CD8+DR/DP/DQ+ cells indicates that a close correlation between HIV persistence and immune activation continues during consistently suppressive therapy. The inducers of the distinct activation profile warrant further investigation.


Journal of Clinical Microbiology | 2015

Accurate Quantification of Episomal HIV-1 Two-Long Terminal Repeat Circles by Use of Optimized DNA Isolation and Droplet Digital PCR

Eva Malatinkova; Maja Kiselinova; Pawel Bonczkowski; Wim Trypsteen; Peter Messiaen; Jolien Vermeire; Bruno Verhasselt; Karen Vervisch; Linos Vandekerckhove; Ward De Spiegelaere

ABSTRACT Episomal HIV-1 two-long terminal repeat (2-LTR) circles are considered markers for ongoing viral replication. Two sample processing procedures were compared to accurately quantify 2-LTR in patients by using droplet digital PCR (ddPCR). Here, we show that plasmid isolation with a spiked non-HIV plasmid for normalization enables more accurate 2-LTR quantification than genomic DNA isolation.


Analytical Biochemistry | 2013

Touchdown digital polymerase chain reaction for quantification of highly conserved sequences in the HIV-1 genome

Ward De Spiegelaere; Eva Malatinkova; Maja Kiselinova; Pawel Bonczkowski; Chris Verhofstede; Dirk Vogelaers; Linos Vandekerckhove

Digital polymerase chain reaction (PCR) is an emerging absolute quantification method based on the limiting dilution principle and end-point PCR. This methodology provides high flexibility in assay design without influencing quantitative accuracy. This article describes an assay to quantify HIV DNA that targets a highly conserved region of the HIV-1 genome that hampers optimal probe design. To maintain high specificity and allow probe binding and hydrolysis of a probe with low melting temperature, a two-stage touchdown PCR was designed with a first round of amplification at high temperature and a subsequent round at low temperature to allow accumulation of fluorescence.


eLife | 2015

Impact of a decade of successful antiretroviral therapy initiated at HIV-1 seroconversion on blood and rectal reservoirs

Eva Malatinkova; Ward De Spiegelaere; Pawel Bonczkowski; Maja Kiselinova; Karen Vervisch; Wim Trypsteen; Margaret Johnson; Chris Verhofstede; Danny De Looze; Charles Murray; Sabine Kinloch-de Loes; Linos Vandekerckhove

Persistent reservoirs remain the major obstacles to achieve an HIV-1 cure. Prolonged early antiretroviral therapy (ART) may reduce the extent of reservoirs and allow for virological control after ART discontinuation. We compared HIV-1 reservoirs in a cross-sectional study using polymerase chain reaction-based techniques in blood and tissue of early-treated seroconverters, late-treated patients, ART-naïve seroconverters, and long-term non-progressors (LTNPs) who have spontaneous virological control without treatment. A decade of early ART reduced the total and integrated HIV-1 DNA levels compared with later treatment initiation, but not reaching the low levels found in LTNPs. Total HIV-1 DNA in rectal biopsies did not differ between cohorts. Importantly, lower viral transcription (HIV-1 unspliced RNA) and enhanced immune preservation (CD4/CD8), reminiscent of LTNPs, were found in early compared to late-treated patients. This suggests that early treatment is associated with some immunovirological features of LTNPs that may improve the outcome of future interventions aimed at a functional cure. DOI: http://dx.doi.org/10.7554/eLife.09115.001


Journal of Antimicrobial Chemotherapy | 2015

HIV-1 RNA and HIV-1 DNA persistence during suppressive ART with PI-based or nevirapine-based regimens

Maja Kiselinova; Anna Maria Geretti; Eva Malatinkova; Karen Vervisch; Apostolos Beloukas; Peter Messiaen; Pawel Bonczkowski; Wim Trypsteen; Steven Callens; Chris Verhofstede; Ward De Spiegelaere; Linos Vandekerckhove

OBJECTIVES Whether ART regimens differ in their propensity to allow persistent HIV-1 detection remains unclear. To investigate this, we performed a cross-sectional study to characterize HIV-1 persistence in peripheral blood during suppressive therapy with NRTIs plus a PI or nevirapine. METHODS Residual plasma HIV-1 RNA was quantified by real-time PCR. Cell-associated proviral total HIV-1 DNA, unspliced and multiply spliced HIV-1 RNA and 2-long terminal repeat (2-LTR) circles were quantified by digital PCR. RESULTS Comparing PI with nevirapine recipients, residual plasma HIV-1 RNA detection rates were 47/80 (58.8%) versus 37/81 (45.7%), with median (IQR) levels of 4 (3-8) versus 4 (3-7) copies/mL (P = 0.207); detection was less likely with longer duration of suppressive ART (P = 0.020), independently of treatment. HIV-1 DNA was detected in all patients, with median levels of 2.3 (IQR 2.0-2.7) versus 2.5 (IQR 2.1-2.7) log10 copies/10(6) PBMCs, respectively; HIV-1 DNA levels were associated with pre-ART viral load (P = 0.004) and with residual HIV-1 RNA (P = 0.034), unspliced HIV-1 RNA (P = 0.001) and 2-LTR circles (P = 0.005), independently of treatment. CONCLUSIONS No significant differences were revealed in levels of residual plasma HIV-1 RNA, total HIV-1 DNA or intracellular markers of ongoing virus replication (unspliced and multiply spliced HIV-1 RNA and 2-LTR circles) between treatment groups.


EBioMedicine | 2017

High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay

Robert W. Yucha; Kristen S. Hobbs; Emily Hanhauser; Louise E. Hogan; Wildaliz Nieves; Mehmet O. Ozen; Fatih Inci; Vanessa A. York; Erica A. Gibson; Cassandra Thanh; Hadi Shafiee; Rami El Assal; Maja Kiselinova; Yvonne P. Robles; Helen Bae; Kaitlyn S. Leadabrand; ShuQi Wang; Steven G. Deeks; Daniel R. Kuritzkes; Utkan Demirci; Timothy J. Henrich

Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4+ T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4 + T-cells in a single experiment. The scdPCR method was then applied to CD4+ T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous—increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies.

Collaboration


Dive into the Maja Kiselinova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Vervisch

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Vogelaers

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Danny De Looze

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge