Maja Potokar
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maja Potokar.
Journal of Biological Chemistry | 2007
Tina Pangršič; Maja Potokar; Matjaz Stenovec; Marko Kreft; Elsa Fabbretti; Andrea Nistri; Evgeny Pryazhnikov; Leonard Khiroug; Rashid Giniatullin; Robert Zorec
Astrocytes appear to communicate with each other as well as with neurons via ATP. However, the mechanisms of ATP release are controversial. To explore whether stimuli that increase [Ca2+]i also trigger vesicular ATP release from astrocytes, we labeled ATP-containing vesicles with the fluorescent dye quinacrine, which exhibited a significant co-localization with atrial natriuretic peptide. The confocal microscopy study revealed that quinacrine-loaded vesicles displayed mainly non-directional spontaneous mobility with relatively short track lengths and small maximal displacements, whereas 4% of vesicles exhibited directional mobility. After ionomycin stimulation only non-directional vesicle mobility could be observed, indicating that an increase in [Ca2+]i attenuated vesicle mobility. Total internal reflection fluorescence (TIRF) imaging in combination with epifluorescence showed that a high percentage of fluorescently labeled vesicles underwent fusion with the plasma membrane after stimulation with glutamate or ionomycin and that this event was Ca2+-dependent. This was confirmed by patch-clamp studies on HEK-293T cells transfected with P2X3 receptor, used as sniffers for ATP release from astrocytes. Glutamate stimulation of astrocytes was followed by an increase in the incidence of small transient inward currents in sniffers, reminiscent of postsynaptic quantal events observed at synapses. Their incidence was highly dependent on extracellular Ca2+. Collectively, these findings indicate that glutamate-stimulated ATP release from astrocytes was most likely exocytotic and that after stimulation the fraction of quinacrine-loaded vesicles, spontaneously exhibiting directional mobility, disappeared.
Glia | 2004
Marko Kreft; Matjaž Stenovec; Marjan Rupnik; Sonja Grilc; Mojca Kržan; Maja Potokar; Tina Pangršič; Philip G. Haydon; Robert Zorec
Astrocytes, a subtype of glial cells, have numerous characteristics that were previously considered exclusive for neurons. One of these characteristics is a cytosolic [Ca2+] oscillation that controls the release of the chemical transmitter glutamate and atrial natriuretic peptide. These chemical messengers appear to be released from astrocytes via Ca2+‐dependent exocytosis. In the present study, patch‐clamp membrane capacitance measurements were used to monitor changes in the membrane area of a single astrocyte, while the photolysis of caged calcium compounds by a UV flash was used to elicit steps in [Ca2+]i to determine the exocytotic properties of astrocytes. Experiments show that astrocytes exhibit Ca2+‐dependent increases in membrane capacitance, with an apparent Kd value of ∼20 μM [Ca2+]i. The delay between the flash delivery and the peak rate in membrane capacitance increase is in the range of tens to hundreds of milliseconds. The pretreatment of astrocytes by the tetanus neurotoxin, which specifically cleaves the neuronal/neuroendocrine type of SNARE protein synaptobrevin, abolished flash‐induced membrane capacitance increases, suggesting that Ca2+‐dependent membrane capacitance changes involve tetanus neurotoxin‐sensitive SNARE‐mediated vesicular exocytosis. Immunocytochemical experiments show distinct populations of vesicles containing glutamate and atrial natriuretic peptide in astrocytes. We conclude that the recorded Ca2+‐dependent changes in membrane capacitance represent regulated exocytosis from multiple types of vesicles, about 100 times slower than the exocytotic response in neurons.
Traffic | 2007
Maja Potokar; Marko Kreft; Lizhen Li; J Daniel Andersson; Tina Pangršič; Helena H. Chowdhury; Milos Pekny; Robert Zorec
Exocytotic vesicles in astrocytes are increasingly viewed as essential in astrocyte‐to‐neuron communication in the brain. In neurons and excitable secretory cells, delivery of vesicles to the plasma membrane for exocytosis involves an interaction with the cytoskeleton, in particular microtubules and actin filaments. Whether cytoskeletal elements affect vesicle mobility in astrocytes is unknown. We labeled single vesicles with fluorescent atrial natriuretic peptide and monitored their mobility in rat astrocytes with depolymerized microtubules, actin, and intermediate filaments and in mouse astrocytes deficient in the intermediate filament proteins glial fibrillary acidic protein and vimentin. In astrocytes, as in neurons, microtubules participated in directional vesicle mobility, and actin filaments played an important role in this process. Depolymerization of intermediate filaments strongly affected vesicle trafficking and in their absence the fraction of vesicles with directional mobility was reduced.
Stem Cells | 2012
Ulrika Wilhelmsson; Maryam Faiz; Yolanda de Pablo; Marika Sjöqvist; Daniel Andersson; Åsa Widestrand; Maja Potokar; Matjaž Stenovec; Peter L.P. Smith; Noriko Shinjyo; Tulen Pekny; Robert Zorec; Anders Ståhlberg; Marcela Pekna; Cecilia Sahlgren; Milos Pekny
Adult neurogenesis is regulated by a number of cellular players within the neurogenic niche. Astrocytes participate actively in brain development, regulation of the mature central nervous system (CNS), and brain plasticity. They are important regulators of the local environment in adult neurogenic niches through the secretion of diffusible morphogenic factors, such as Wnts. Astrocytes control the neurogenic niche also through membrane‐associated factors, however, the identity of these factors and the mechanisms involved are largely unknown. In this study, we sought to determine the mechanisms underlying our earlier finding of increased neuronal differentiation of neural progenitor cells when cocultured with astrocytes lacking glial fibrillary acidic protein (GFAP) and vimentin (GFAP−/−Vim−/−). We used primary astrocyte and neurosphere cocultures to demonstrate that astrocytes inhibit neuronal differentiation through a cell–cell contact. GFAP−/−Vim−/− astrocytes showed reduced endocytosis of Notch ligand Jagged1, reduced Notch signaling, and increased neuronal differentiation of neurosphere cultures. This effect of GFAP−/−Vim−/− astrocytes was abrogated in the presence of immobilized Jagged1 in a manner dependent on the activity of γ‐secretase. Finally, we used GFAP−/−Vim−/− mice to show that in the absence of GFAP and vimentin, hippocampal neurogenesis under basal conditions as well as after injury is increased. We conclude that astrocytes negatively regulate neurogenesis through the Notch pathway, and endocytosis of Notch ligand Jagged1 in astrocytes and Notch signaling from astrocytes to neural stem/progenitor cells depends on the intermediate filament proteins GFAP and vimentin. STEM Cells2012;30:2320–2329
Glia | 2010
Maja Potokar; Matjaž Stenovec; Mateja Gabrijel; Lizhen Li; Marko Kreft; Sonja Grilc; Milos Pekny; Robert Zorec
Intermediate filament (IF) proteins upregulation is a hallmark of astrocyte activation and reactive gliosis, but its pathophysiological implications remain incompletely understood. A recently reported association between IFs and directional mobility of peptidergic vesicles allows us to hypothesize that IFs affect vesicle dynamics and exocytosis‐mediated astrocyte communication with neighboring cells. Here, we ask whether the trafficking of recycling vesicles (i.e., those fused to and then retrieved from the plasma membrane) and endosomes/lysosomes depends on IFs. Recycling vesicles were labeled by antibodies against vesicle glutamate transporter 1 (VGLUT1) and atrial natriuretic peptide (ANP), respectively, and by lysotracker, which labels endosomes/lysosomes. Quantitative fluorescence microscopy was used to monitor the mobility of labeled vesicles in astrocytes, derived from either wild‐type (WT) mice or mice deficient in glial fibrillary acidic protein and vimentin (GFAP−/−Vim−/−), the latter lacking astrocyte IFs. Stimulation with ionomycin or ATP enhanced the mobility of VGLUT1‐positive vesicles and reduced the mobility of ANP‐positive vesicles in WT astrocytes. In GFAP−/−Vim−/− astrocytes, both vesicle types responded to stimulation, but the relative increase in mobility of VGLUT1‐positive vesicles was more prominent compared with nonstimulated cells, whereas the stimulation‐dependent attenuation of ANP‐positive vesicles mobility was reduced compared with nonstimulated cells. The mobility of endosomes/lysosomes decreased following stimulation in WT astrocytes. However, in GFAP−/−Vim−/− astrocytes, a small increase in the mobility of endosomes/lysosomes was observed. These findings show that astrocyte IFs differentially affect the stimulation‐dependent mobility of vesicles. We propose that upregulation of IFs in pathologic states may alter the function of astrocytes by deregulating vesicle trafficking.
Journal of Neuroinflammation | 2012
Nina Vardjan; Mateja Gabrijel; Maja Potokar; Urban Švajger; Marko Kreft; Matjaž Jeras; Yolanda de Pablo; Maryam Faiz; Milos Pekny; Robert Zorec
BackgroundIn immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs.MethodsThe identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software.ResultsConfocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent.ConclusionsSince reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
The Journal of Neuroscience | 2011
Jernej Jorgačevski; Maja Potokar; Sonja Grilc; Marko Kreft; Wei Liu; Jeff W. Barclay; Johanna Bückers; Rebecca Medda; Stefan W. Hell; Vladimir Parpura; Robert D. Burgoyne; Robert Zorec
The release of hormones and neurotransmitters, mediated by regulated exocytosis, can be modified by regulation of the fusion pore. The fusion pore is considered stable and narrow initially, eventually leading to the complete merger of the vesicle and the plasma membranes. By using the high-resolution patch-clamp capacitance technique, we studied single vesicles and asked whether the Sec1/Munc18 proteins, interacting with the membrane fusion-mediating SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, affect fusion pore properties. Munc18-1 mutants were transfected into lactotrophs to affect the interaction of Munc18-1 with syntaxin1 (Synt1) (R39C), Rab3A (E466K), and Mints (P242S). Compared with wild-type, Munc18-1 E466K increased the frequency of the fusion event. The latter two mutants increased the fusion pore dwell-time. All the mutants stabilized narrow fusion pores and increased the amplitude of fusion events, likely via preferential fusion of larger vesicles, since overexpression of Munc18-1 R39C did not affect the average size of vesicles, as determined by stimulated emission depletion (STED) microscopy. Single-molecule atomic force microscopy experiments revealed that wild-type Munc18-1, but not Munc18-1 R39C, abrogates the interaction between synaptobrevin2 (Syb2) and Synt1 binary trans-complexes. However, neither form of Munc18-1 affected the interaction of Syb2 with the preformed binary cis-Synt1A-SNAP25B complexes. This indicates that Munc18-1 performs a proofing function by inhibiting tethering of Syb2-containing vesicles solely to Synt1 at the plasmalemma and favoring vesicular tethering to the preformed binary cis-complex of Synt1A-SNAP25B. The association of Munc18-1 with the ternary SNARE complex leads to tuning of fusion pores via multiple and converging mechanisms involving Munc18-1 interactions with Synt1A, Rab3A, and Mints.
Molecular Membrane Biology | 2010
Jernej Jorgačevski; Miha Fošnarič; Nina Vardjan; Matjaž Stenovec; Maja Potokar; Marko Kreft; Veronika Kralj-Iglič; Aleš Iglič; Robert Zorec
Abstract It is believed that in regulated exocytosis the vesicle membrane fuses with the plasma membrane in response to a physiological stimulus. However, in the absence of stimulation, repetitive transient fusion events are also observed, reflecting a stable state. The mechanisms by which the initial fusion pore attains stability are poorly understood. We modelled energetic stability of the fusion pore by taking into account the anisotropic, intrinsic shape of the membrane constituents and their in-plane ordering in the local curvature of the membrane. We used cell-attached membrane capacitance techniques to monitor the appearance and conductance of single fusion pore events in cultured rat lactotrophs. The results revealed a bell-shaped distribution of the fusion pore conductance with a modal value of 25 pS. The experimentally observed increase of the fusion pore stability with decreasing fusion pore radius agrees well with the theoretical predictions. Moreover, the results revealed a correlation between the amplitude of transient capacitance increases and the fusion pore conductance, indicating that larger vesicles may attain a stable fusion pore with larger fusion pore diameters.
Journal of Neurochemistry | 2006
Tina Pangršič; Maja Potokar; Philip G. Haydon; Robert Zorec; Marko Kreft
The mechanisms mediating the release of chemical transmitters from astrocytes are the subject of intense research. Recent experiments have shown that hypotonic conditions stimulate the release of glutamate and ATP from astrocytes, but a mechanistic understanding of this process is not available. To determine whether hypotonicity activates the process of regulated exocytosis, we monitored membrane capacitance by the whole‐cell patch‐clamp technique whilst a hypotonic medium was applied to cultured astrocytes. If exocytosis is triggered under hypotonic conditions, as it is following increases in cytosolic calcium, a net increase in membrane surface area, monitored by measuring the whole‐cell membrane capacitance, is expected. Simultaneous measurements of cell size and whole‐cell membrane conductance and surface area demonstrated that hypotonic medium (210 mOsm for 200 s) resulted in an increase in membrane conductance and in the swelling of cultured astrocytes by an average of 40%, as monitored by cell cross‐sectional area, but without any corresponding change in membrane surface area. As we have demonstrated that capacitance measurements have the sensitivity to detect increases in cell surface area as small as 0.5%, we conclude that cell swelling occurs via an exocytosis‐independent mechanism, probably involving the unfolding of the plasma membrane.
Glia | 2008
Maja Potokar; Matjaž Stenovec; Marko Kreft; Mateja Erdani Kreft; Robert Zorec
Astrocytes are increasingly viewed as playing many roles in the integration of brain function. These cells store among other gliotransmitters also neuroactive peptides in membrane bound vesicles, the trafficking and release of which, may be changed in altered conditions, therefore affecting the physiological status of neurons. In general, peptidergic membrane‐bound secretory vesicles fuse with the plasma membrane in the process of exocytosis. Some of them are retrieved from the plasma membrane to be recycled back into the cytosol. The mobility of retrieving vesicles in astrocytes was not studied yet, however, understanding the mechanisms of such trafficking would highlight the communication paths between astrocytes and neurons. We labeled vesicles with antibodies against the vesicle atrial natriuretic peptide (ANP), which is stored inside secretory vesicles. ANP‐vesicles in astrocytes have been proposed to enter Ca2+‐dependent secretion and here we show that they are associated with synaptotagmin IV (SytIV), a regulator of exocytosis in astrocytes. Moreover, the results show that recycling ANP‐vesicles are to a significant extent acidic. Their velocity (0.06 ± 0.001 μm/s) is one order of magnitude lower than the velocity of vesicles trafficking to the plasma membrane (Potokar et al. ( 2005 ) Biochem Biophys Res Commun 329:678–683; Potokar et al. ( 2007 ) Traffic 8:12–20). Interestingly, ionomycin or ATP application further attenuated ANP‐vesicle mobility to 0.02 ± 0.002 and to 0.03 ± 0.001 μm/s, respectively. In summary, the mobility of recycling peptidergic vesicles appears to be slower than the vesicle traffic to the plasma membrane and it requires an intact cytoskeleton. Physiological implications of attenuated traffic of ANP‐vesicles are considered in the discussion.